Acene

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Die allgemeine Strukturformel von Acenen (n ≥ 1)

Acene zählen in der Chemie zu einer Klasse von organischen Verbindungen, genauer den polycyclischen aromatischen Kohlenwasserstoffen, bestehend aus linear anellierten (kondensierten) Benzol-Ringen. Gemäß Nomenklatur stellt Anthracen den Grundkörper der Reihe dar,[1] vereinzelt wird auch Naphthalin zu den Acenen gezählt.[2][3] Die größeren Vertreter sind potentiell interessant für optoelektronische Anwendungen und aktuell Gegenstand chemischer und elektronischer Forschung. Pentacen wurde eingebaut in organische Transistoren, mit Ladungsbeweglichkeiten bis zu 5 cm2·V−1·s−1.

Naphthalin und die ersten fünf unsubstituierten Acene sind in der Tabelle aufgelistet:

Name Summenformel Anzahl Ringe Molmasse CAS-Nummer Strukturformel
Naphthalin C10H8 2 128,17 g·mol−1 91-20-3 Naphthalene 200.svg
Anthracen C14H10 3 178,23 g·mol−1 120-12-7 Anthracene 200.svg
Tetracen C18H12 4 228,29 g·mol−1 92-24-0 Tetracene 200.svg
Pentacen C22H14 5 278,35 g·mol−1 135-48-8 Pentacene 200.svg
Hexacen C26H16 6 328,41 g·mol−1 258-31-1 Hexacene 200.svg
Heptacen C30H18 7 378,46 g·mol−1 258-38-8 Heptacene 200.svg

Die höheren Vertreter, Hexacen und Heptacen, sind sehr reaktionsfreudig (instabil) und können nur in einer Matrix isoliert werden. Allerdings sind bis(trialkylsilyl)ethynylierte Derivate von Hexacen and Heptacen stabiler und können als kristalline Feststoffe isoliert werden.[3]

Größere Acene[Bearbeiten]

Wegen der zunehmenden Größe des konjugierten π-Elektronensystems sind größere Acene ein aktuelles Forschungsthema.[4] Acene können auch Edukte für die Herstellung von Nanoröhrchen etc. sein. Unsubstituiertes Octacen (n=8) and Nonacen (n=9)[5] wurden in der Matrix isoliert und charakterisiert. Über ein stabiles substituiertes Nonacen wurde ebenfalls berichtet.[6]

Isomere[Bearbeiten]

Strukturelle Ähnlichkeit mit den linear aufgebauten Acenen besitzen 1,2-anellierten schraubenförmig aufgebaute Helicene.

Nomenklatur / Definition der Verbindungsklasse[Bearbeiten]

Als Acene werden polycyclische aromatische Kohlenwasserstoffe bezeichnet, die aus linear kondensierten Benzol-Einheiten aufgebaut sind. Während laut IUPAC Gold Book[1] Anthracen das erste Glied in der Reihe der Acene darstellt, ist laut Römpp Naphthalin als kleinstes Acen anzusehen.[2] Grundlage der Definition ist laut Römpp der von Clar 1939 getroffene Nomenklarurvorschlag.[7]

Anders als nach der Definition in Römpp zu vermuten, war jedoch Kernpunkt des Clarschen Vorschlages, die Klasse der linear kondensierten von derjenigen der angular kondensierten Kohlenwasserstoffe zu unterscheiden, indem die jeweiligen Vertreter basierend auf den Grundkörpern Anthracen (bei Clar als Triacen bezeichnet) und Phenanthren (bei Clar als Triphen bezeichnet) benannt werden sollen. „Wenn nun die Reihe der Acene vom Anthracen abgeleitet wird, so läßt sich auch eine Reihe angularer Kohlewasserstoffe, die als „Phene“ zu bezeichnen wären, vom Phenanthren ableiten: ...“. Obwohl lediglich die Bezeichnung Acen Eingang in die systematische Nomenklatur gefunden hat, so zeigen die Ausführungen von Clar eindeutig, dass Naphthalin oder gar Benzol im Sinne der Nomenklatur nicht zur Klasse der Acene gehören.

Einzelnachweise[Bearbeiten]

  1. a b Eintrag zu acenes. In: IUPAC Compendium of Chemical Terminology (the “Gold Book”). doi:10.1351/goldbook.A00061 Version: 2.3.3.
  2. a b J. Falbe, M Regitz (Hrgs.): Römpp Chemie Lexikon, Stichwort Acene, S. 20, 9. erweiterte und neubearbeitete Auflage, 1995, Georg Thieme Verlag, Stuttgart.
  3. a b John E. Anthony: The Larger Acenes: Versatile Organic Semiconductors. In: Angewandte Chemie International Edition. 47, 2008, S. 452. doi:10.1002/anie.200604045.
  4. Sanjio S. Zade, Michael Bendikov: Heptacene and Beyond: the Longest Characterized Acenes. In: Angewandte Chemie International Edition. 2010, S. 4012–4015. doi:10.1002/anie.200906002.
  5. Christina Tönshoff, Holger F. Bettinger: Photogeneration of Octacene and Nonacene. In: Angewandte Chemie International Edition. 2010, S. 4125–4128. doi:10.1002/anie.200906355.
  6. Irvinder Kaur, Mikael Jazdzyk, Nathan N. Stein, Polina Prusevich, Glen P. Miller: Design, Synthesis, and Characterization of a Persistent Nonacene Derivative. In: Journal of the American Chemical Society. 132, 2010, S. 1261. doi:10.1021/ja9095472.
  7. E. Clar: Vorschläge zur Nomenklatur kondensierter Ringsysteme (Aromatische Kohlenwasserstoffe, XXVI. Mitteilung) In: Ber. dtsch. Chem. Ges. A/B, 1939, 72, 2137–2139. doi:10.1002/cber.19390721219.