Autoradiographie

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Autoradiogramm eines Schnitts durch das Gehirn eines Rattenembryos. Die Markierung erfolgte mit Oligonukleotid-Sequenzen, die mit 35S-dATP (Desoxyadenosintriphosphat) konjugiert waren und an GAD67 (Glutamatdecarboxylase 67) binden. Die Bereiche mit hoher Radioaktivität (hohe Markerkonzentration) sind schwarz. Dies ist insbesondere in der subventrikulären Zone (SVZ) der Fall. Der schwarze Maßstabsbalken entspricht einer Länge von 2 mm.

Autoradiographie oder Radiographie (häufige Abkürzung AURA) bezeichnet die Sichtbarmachung einer chemischen Komponente durch radioaktive Isotope,[1] ursprünglich durch Schwärzung eines fotografischen Filmes, inzwischen vermehrt mit Hilfe eines Strahlungsdetektors. Die dabei erhaltene Aufnahme wird Autoradiogramm genannt.

Anwendungen[Bearbeiten]

Die Autoradiographie war über drei Jahrzehnte hin ein integraler Bestandteil der DNA-Sequenzanalyse nach Sanger. Seit den letzten Jahren des 20. Jahrhunderts werden allerdings vermehrt fluoreszierende anstelle von radioaktiv markierten DNA-Nukleotiden zur Sequenzanalyse benutzt.

Autoradiographie findet weiterhin Verwendung bei der Produktion von rekombinanten Proteinen, Analyse von enzymatischen Reaktionen, oder Identifizierung von Enzym-Substraten.[2]

Außerdem wird sie in der Pharmakokinetik angewendet,[3] um z. B. Liberation Absorption Distribution Metabolism Excretion-Studien (LADME) zu erstellen.

Die Verbindung von Autoradiographie und Neutronenaktivierung wird als Neutronenautoradiografie eingesetzt, um lokale elementare Zusammensetzungen bei Gemälden zu untersuchen.

Durchführung[Bearbeiten]

Allen Anwendungen der Autoradiographie gemeinsam ist die Notwendigkeit, radioaktive Isotope in die zu analysierenden Moleküle einzuschleusen. Aufgrund des häufigen Vorkommens der korrespondierenden stabilen Isotope in Biomolekülen und ihrer relativ geringen Gefährlichkeit werden häufig die Radioisotope 14C (Kohlenstoff), 35S (Schwefel), 32P (Phosphor) und 3H (Tritium) eingesetzt.

1. Beispiel – Markierung rekombinanter Proteine

Ein mit einem Expressionsplasmid transformierter Bakterienstamm wird mit einem Nährmedium versetzt, das die radioaktiv markierte Aminosäure 35S-Methionin enthält. 35S-Methionin wird in das rekombinante Protein, das auf dem Plasmid codiert ist, eingebaut. Ein Bakterienextrakt wird per SDS-PAGE aufgetrennt, das Gel wird getrocknet, und ein Film wird aufgelegt. Nach „Belichtung“ des Films durch die von den Isotopen ausgehenden Betastrahlen ist auf dem entwickelten Film die Position des rekombinanten Proteins sichtbar.

2. Beispiel – Analyse von Enzymaktivität

Eine ATPase, also ein Enzym, das das Nukleotid ATP spaltet, wird mit radioaktiv markiertem 32P-ATP inkubiert. Die Mischung wird nach unterschiedlichen Zeiten durch Dünnschichtchromatografie aufgetrennt, die Chromatographieplatte wird getrocknet und auf Film gelegt. Die Schwärzung des Films durch 32P-Phosphat spiegelt die Aktivität des Enzyms wider.

Einzelnachweise[Bearbeiten]

  1. E. G. Solon, A. Schweitzer, M. Stoeckli, B. Prideaux: Autoradiography, MALDI-MS, and SIMS-MS imaging in pharmaceutical discovery and development. In: The AAPS Journal. Band 12, Nummer 1, März 2010, S. 11–26, ISSN 1550-7416. doi:10.1208/s12248-009-9158-4. PMID 19921438. PMC 2811645 (freier Volltext).
  2. R. Westermeier, R. Marouga: Protein detection methods in proteomics research. In: Bioscience reports. Band 25, Nummer 1–2, 2005 Feb-Apr, S. 19–32, ISSN 0144-8463. doi:10.1007/s10540-005-2845-1. PMID 16222417.
  3. D. P. Holschneider, J. M. Maarek: Brain maps on the go: functional imaging during motor challenge in animals. In: Methods (San Diego, Calif.). Band 45, Nummer 4, August 2008, S. 255–261, ISSN 1095-9130. doi:10.1016/j.ymeth.2008.04.006. PMID 18554522. PMC 2561174 (freier Volltext).