Bariumtitanat

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Kristallstruktur
Struktur von Bariumtitanat
__ Ba2+     __ Ti4+      __ O2−
Allgemeines
Name Bariumtitanat
Verhältnisformel BaTiO3
CAS-Nummer 12047-27-7
Kurzbeschreibung

weißes bis graues, geruchloses Pulver[1]

Eigenschaften
Molare Masse 233,19 g·mol−1
Aggregatzustand

fest

Dichte

5,85 g·cm−3[1]

Schmelzpunkt

1620 °C[1]

Löslichkeit

unlöslich in Wasser[1]

Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung aus EU-Verordnung (EG) 1272/2008 (CLP) [2]
07 – Achtung

Achtung

H- und P-Sätze H: 302​‐​332
P: keine P-Sätze [3]
EU-Gefahrstoffkennzeichnung [4] aus EU-Verordnung (EG) 1272/2008 (CLP) [2]
Gesundheitsschädlich
Gesundheits-
schädlich
(Xn)
R- und S-Sätze R: 20/22
S: (2)​‐​28
MAK

0,5 mg·m−3 Barium[1]

Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.

Vorlage:Infobox Chemikalie/Summenformelsuche nicht möglich

Bariumtitanat ist ein Mischoxid von Barium und Titan aus der Gruppe der Titanate und kristallisiert in der Perowskit-Struktur.

Gewinnung und Darstellung[Bearbeiten]

BaTiO3 kann nach der klassischen Mischoxid-Methode aus BaCO3 (Bariumcarbonat) und TiO2 (Titandioxid) in einer Festkörperreaktion, dem sogenannten Kalzinieren, bei einer Temperatur von 1200 °C hergestellt werden.

\mathrm{BaCO_3 \ + \ TiO_2 \longrightarrow BaTiO_3 \ + \ CO_2}

Moderatere Bedingungen bietet die Kristallisation aus schmelzflüssiger Lösung. Stöchiometrische Mengen Bariumcarbonat und Titandioxid (Anatas) werden mit einem großen Überschuss Natriumchlorid vermengt. Im Ofen kristallisiert bei 1000 °C das Bariumtitanat aus. Nach Auswaschen der Salzreste erhält man es in sehr reiner Form, in feinen Kristallen.

Eigenschaften[Bearbeiten]

Physikalische Eigenschaften[Bearbeiten]

Bariumtitanat gehört zur Gruppe der Elektrokeramiken. Bariumtitanat ist ein Ferroelektrikum und besitzt eine ausgeprägte Hystereseschleife. Wie alle Ferroelektrika besitzt es eine hohe Dielektrizitätskonstante von über 2000. Bariumtitanat kristallisiert in zwei polymorphen Gittertypen, dem hexagonalen Gittertyp und der Perowskit-Struktur. Bei Temperaturen unter 120 °C liegt es als tetragonal verzerrte Modifikation der Perowskit-Struktur vor, bei der das Titanion gegenüber den Sauerstoffionen in z-Richtung verschoben ist. Daraus resultieren ein Dipolmoment der Elementarzelle und die Polarisation. Bei 120 °C erfolgt die Phasenumwandlung zur kubischen Perowskit-Struktur, bei der sich das Titanion genau im Zentrum des Oktaeders aus Sauerstoffionen befindet. Damit hat die Elementarzelle des Kristalls kein Dipolmoment mehr und der Kristall ist nicht mehr ferroelektrisch. Bei hohen Temperaturen erfolgt die Phasenumwandlung in die hexagonale Phase. Diese Phasenumwandlung erfordert eine umfangreichere Umordnung der Ionen als der Übergang bei 120 °C. Bei größeren Kristallen kommt es deshalb häufig vor, dass sie bei dieser Umwandlung zerbrechen.

Verwendung[Bearbeiten]

Aufgrund der ferroelektrischen, dielektrischen und pyroelektrischen Eigenschaften werden Bariumtitanat sowie verwandte Perowskite wie Pb(Zr,Ti)O3 vielseitig in der Elektronik und Sensorik verwendet. Als Beispiel seien hierzu Kaltleiter, sowie die Verwendung als Dielektrikum in Kondensatoren, insbesondere in Keramikkondensatoren erwähnt.

Einzelnachweise[Bearbeiten]

  1. a b c d e Datenblatt Bariumtitanat bei AlfaAesar, abgerufen am 7. Januar 2010 (JavaScript erforderlich)..
  2. a b Nicht explizit in EU-Verordnung (EG) 1272/2008 (CLP) gelistet, fällt aber dort mit der angegebenen Kennzeichnung unter den Sammelbegriff „Bariumsalze“; Eintrag aus der CLP-Verordnung zu Bariumsalze in der GESTIS-Stoffdatenbank des IFA, abgerufen am 8. April 2012 (JavaScript erforderlich)
  3. Datenblatt Bariumtitanat bei Sigma-Aldrich, abgerufen am 9. März 2011 (PDF).
  4. Seit 1. Dezember 2012 ist für Stoffe ausschließlich die GHS-Gefahrstoffkennzeichnung zulässig. Bis zum 1. Juni 2015 dürfen noch die R-Sätze dieses Stoffes für die Einstufung von Gemischen herangezogen werden, anschließend ist die EU-Gefahrstoffkennzeichnung von rein historischem Interesse.

Literatur[Bearbeiten]