Bijektive Funktion

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Eine bijektive Funktion

Bijektivität (zum Adjektiv bijektiv, welches etwa ‚umkehrbar eindeutig auf‘ bedeutet → daher auch der Begriff eineindeutig bzw. Eineindeutigkeit) ist ein mathematischer Begriff aus dem Bereich der Mengenlehre. Er bezeichnet eine spezielle Eigenschaft von Abbildungen und Funktionen. Bijektive Abbildungen und Funktionen nennt man auch Bijektionen. Zu einer mathematischen Struktur auftretende Bijektionen haben oft eigene Namen wie Isomorphismus, Diffeomorphismus, Homöomorphismus, Spiegelung oder Ähnliches. Hier sind dann in der Regel noch zusätzliche Forderungen in Hinblick auf die Erhaltung der jeweils betrachteten Struktur zu erfüllen.

Zur Veranschaulichung kann man sagen, dass bei einer Bijektion eine vollständige Paarbildung zwischen den Elementen von Definitionsmenge und Zielmenge stattfindet. Bijektionen behandeln ihren Definitionsbereich und ihren Wertebereich also symmetrisch; deshalb hat eine bijektive Funktion immer eine Umkehrfunktion.

Bei einer Bijektion haben die Definitionsmenge und die Zielmenge stets dieselbe Mächtigkeit. Im Falle, dass eine Bijektion zwischen zwei endlichen Mengen vorliegt, ist diese gemeinsame Mächtigkeit eine natürliche Zahl, nämlich genau die Anzahl der Elemente jeder der beiden Mengen.

Die Bijektion einer Menge auf sich selbst heißt auch Permutation. Auch hier gibt es in mathematischen Strukturen vielfach eigene Namen. Hat die Bijektion darüber hinausgehend strukturerhaltende Eigenschaften, spricht man von einem Automorphismus.

Definition[Bearbeiten]

Seien X und Y Mengen; und sei f eine Funktion bzw. Abbildung , die von X nach Y abbildet, also f \colon X \to Y. f ist bijektiv, wenn für alle y \in Y genau ein x \in X mit f\left(x\right) = y existiert.

Das bedeutet:  f ist bijektiv dann und nur dann, wenn f sowohl

(1) injektiv ist:
Kein Wert der Bildmenge f(X) wird mehrfach angenommen. Mit anderen Worten: Das Urbild jedes Elements der Bildmenge f(X) besteht aus genau einem Element von X.
als auch
(2) surjektiv ist:
Jedes Element der Zielmenge Y wird angenommen. Mit anderen Worten: Die Zielmenge Y und die Bildmenge f(X) stimmen überein, also f\left(X\right) = Y.

Grafische Veranschaulichungen[Bearbeiten]

Beispiele und Gegenbeispiele[Bearbeiten]

Die Menge der reellen Zahlen wird hier mit \mathbb{R} bezeichnet, die Menge der nichtnegativen reellen Zahlen mit \R^+_0.

  • Die Funktion f: \R\to\R, x\mapsto x+a ist bijektiv mit der Umkehrfunktion f^{-1}: \R\to\R, x\mapsto x-a.
  • Ebenso ist für a\ne 0 die Funktion g: \R\to\R, x\mapsto ax bijektiv mit der Umkehrfunktion g^{-1}: \R\to\R, x\mapsto \frac{x}{a}.
  • Beispiel: Ordnet man jedem (monogam) verheirateten Menschen seinen Ehepartner bzw. seine Ehepartnerin zu, ist dies eine Bijektion der Menge aller verheirateten Menschen auf sich selbst. Dies ist sogar ein Beispiel für eine selbstinverse Abbildung.
  • Die folgenden vier Quadratfunktionen unterscheiden sich nur in ihren Definitions- bzw. Wertemengen:
f_1\colon\R\ \ \rightarrow\mathbb{R},\ \ \ x \mapsto x^2
f_2\colon\R^+_0\rightarrow\mathbb{R},\ \ \ x \mapsto x^2
f_3\colon\R\ \ \rightarrow \R^+_0,\ x \mapsto x^2
f_4\colon\R^+_0\rightarrow \R^+_0,\ x \mapsto x^2
Mit diesen Definitionen ist
 f_1 nicht injektiv, nicht surjektiv, nicht bijektiv
 f_2 injektiv, nicht surjektiv, nicht bijektiv
 f_3 nicht injektiv, surjektiv, nicht bijektiv
 f_4 injektiv, surjektiv, bijektiv

Eigenschaften[Bearbeiten]

  • Sind A und B endliche Mengen mit gleich vielen Elementen und ist f : A \to B eine Funktion, dann gilt:
    Ist f injektiv, dann ist f bereits bijektiv.
    Ist f surjektiv, dann ist f bereits bijektiv.
  • Insbesondere gilt also für Funktionen f : A \to A von einer endlichen Menge A in sich selbst:
    f ist injektiv ⇔ f ist surjektiv ⇔ f ist bijektiv.
    Für unendliche Mengen ist das im Allgemeinen falsch. Diese können injektiv auf echte Teilmengen abgebildet werden, ebenso gibt es surjektive Abbildungen einer unendlichen Menge auf sich selbst, die keine Bijektionen sind.
    Solche Überraschungen werden im Artikel Hilberts Hotel detaillierter beschrieben, siehe dazu auch Dedekind-Unendlichkeit.
  • Sind die Funktionen f : A \to B und g : B \to C bijektiv, dann gilt dies auch für die Verkettung g\circ f : A \to C. Die Umkehrfunktion von g\circ f ist dann f^{-1}\circ g^{-1}.
  • Ist g\circ f bijektiv, dann ist f injektiv und g surjektiv.

Geschichte[Bearbeiten]

Nachdem man generationenlang mit Formulierungen wie „eineindeutig“ ausgekommen war, kam erst in der Mitte des 20. Jahrhunderts mit der durchgehend mengentheoretischen Darstellung aller mathematischen Teilgebiete das Bedürfnis nach einer prägnanteren Bezeichnung auf. Wahrscheinlich wurde das Wort injektiv ebenso wie bijektiv und surjektiv in den 1930ern von N. Bourbaki geprägt.

Literatur[Bearbeiten]

Weblinks[Bearbeiten]