Boyer-Moore-Algorithmus

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Der Boyer-Moore-Algorithmus ist ein String-Matching-Algorithmus. Der Algorithmus wird dazu genutzt, um in einem Text T einen bestimmten Teiltext (Muster M) zu finden und wurde 1977 von Robert S. Boyer und J Strother Moore entwickelt.

Algorithmus[Bearbeiten]

Das Muster wird am Anfang linksbündig unter den Text geschrieben und dann von rechts nach links Zeichen für Zeichen mit dem Text verglichen. Sobald ein Mismatch auftritt, berechnen zwei Heuristiken, wie weit das Suchmuster nach rechts verschoben werden kann.

Bad-Character-Heuristik
Stimmt beim Vergleich des Musters mit dem Text von rechts nach links ein Zeichen des Musters nicht mit dem Zeichen des Textes überein („Bad-Character“), wird im Muster nach dem letzten Vorkommen dieses Bad-Characters gesucht und das Muster soweit verschoben, bis beide Buchstaben übereinander liegen. Existiert dieser Bad-Character nicht im Muster, wird das Muster um seine volle Länge nach rechts verschoben. Es kann vorkommen, dass die Bad-Character-Heuristik eine Verschiebung des Musters nach links vorschlägt. In diesem Fall wird um eine Position nach rechts geschoben.
Good-Suffix-Heuristik
Stimmt beim Vergleich des Musters mit dem Text von rechts nach links ein Suffix des Musters mit dem Text überein und tritt danach aber ein Mismatch auf, wird das Muster soweit nach rechts geschoben, bis ein Teilwort des Musters wieder auf das Suffix passt. Existiert das Suffix kein zweites Mal im Muster, wird das Muster um seine volle Länge nach rechts verschoben.

Es kommt vor, dass die beiden Heuristiken unterschiedliche Verschiebungen berechnen. Der Algorithmus wählt immer das Maximum der beiden Vorschläge, um das Muster nach rechts zu verschieben.

Um das Vorgehen effizient zu gestalten, wird für beide Heuristiken in einem Vorverarbeitungsschritt jeweils eine Sprungtabelle errechnet. Die Sprungtabelle für die Bad-Character-Heuristik enthält für jedes im Suchmuster vorkommende Zeichen den Abstand von der Position des letzten Vorkommens im Suchmuster bis zum Ende des Suchmusters. Die Tabelle für die Good-Suffix-Heuristik enthält für jedes Teilmuster (von hinten aus gesehen) den Abstand vom Ende des Musters, ab dem es wieder im Muster vorkommt. Eine detailliertere Beschreibung des Algorithmus findet sich im entsprechenden Artikel in der englischen Wikipedia.

Beispiele[Bearbeiten]

Bad-Character-Heuristik[Bearbeiten]

String: Hoola-Hoola girls like Hooligans

Suchmuster: Hooligan

Hoola-Hoola girls like Hooligans
Hooligan

Das letzte Zeichen stimmt nicht mit dem letzten des Suchmusters überein, also kann man das Suchmuster bis zum ersten „o“ (des Suchmusters, von hinten gelesen) verschieben:

Hoola-Hoola girls like Hooligans
Hooligan
     Hooligan
       Hooligan

Das „r“ im String kommt im Muster überhaupt nicht vor. Das ermöglicht das Verschieben um die komplette Länge des Suchstrings, da hier absolut ausgeschlossen ist, dass das Muster an einer Stelle matcht.

Hoola-Hoola girls like Hooligans
Hooligan
     Hooligan
       Hooligan
               Hooligan
                       Hooligan

Muster wurde gefunden.

Der Boyer-Moore-Algorithmus arbeitet am effizientesten, wenn er ein Zeichen vorfindet, das im Suchmuster nicht vorkommt. Die Bad-Character-Regel kommt dann zum Tragen. Dies ist sehr wahrscheinlich bei einem relativ kleinen Muster und einem großen Alphabet, was ihn für einen solchen Fall besonders geeignet macht. In diesem Fall arbeitet der Algorithmus mit einer Effizienz von O\left(\frac{n}{m}\right) Vergleichen.

Good-Suffix-Heuristik[Bearbeiten]

String: reinesupersauersupesupersupe

Suchmuster: supersupe

reinesupersauersupesupersupe
supersupe

Nur die letzten 4 Buchstaben stimmen überein („supe“). Dieses Suffix kommt im Muster ganz am Anfang vor, also kann man das Muster bis dorthin verschieben:

reinesupersauersupesupersupe
     supersupe

Nur der letzte Buchstabe „e“ stimmt überein. Wir können das Muster bis zum nächsten Auftreten von „e“ in supersupe verschieben:

reinesupersauersupesupersupe
          supersupe

Nur die letzten Buchstaben „ersupe“ stimmen überein, welche an keiner anderen Stelle im Muster mehr auftreten. Allerdings tritt das Suffix „supe“ sowohl am Ende von „ersupe“ als auch am Anfang des Musters auf.

reinesupersauersupesupersupe
               supersupe

„e“ und „r“ stimmen nicht überein, wir verschieben um eine Position. Dieser Fall tritt mehrmals hintereinander auf:

reinesupersauersupesupersupe
                supersupe
reinesupersauersupesupersupe
                 supersupe
reinesupersauersupesupersupe
                  supersupe
reinesupersauersupesupersupe
                   supersupe

Muster wurde gefunden. Zusammen mit der „Bad-Character-Heuristik“ könnten die letzten 3 Iterationen übersprungen werden, da wir bis zum nächsten „r“ im Muster verschieben können.

Laufzeit[Bearbeiten]

Im folgenden verwenden wir die Landau-Notation, um das asymptotische Verhalten der Laufzeit anzugeben. Sucht der Boyer-Moore-Algorithmus nur das erste Auftreten des Musters hat er eine Worst-Case Komplexität von \Theta\left(n + m\right). Wird er jedoch benutzt um alle Matches des Musters zu finden ist die Worst-Case Komplexität \Theta\left(n \cdot m\right). Diese Komplexität kann jedoch durch eine zusätzlich Regel für den Fall, dass im letzten Schritt das Muster gefunden wurde, wieder auf \Theta\left(n + m\right) reduziert werden. Verwendet man den Algorithmus jedoch für ein relativ kleines Muster und ein großes Alphabet, erhält man eine Average-Case Komplexität von \Theta\left(\frac{n}{m}\right).

Bad-Character-Heuristik[Bearbeiten]

Verwendet man nur die Bad-Character-Heuristik erhält man immer noch eine Average-Case Komplexität von \Theta\left(\frac{n}{m}\right) hat muss aber ein Worst-Case Komplexität von \Theta\left(n \cdot m\right) in Kauf nehmen. Ein Worst-Case Beispiel ist der Text T=a^n gemeinsam mit dem Muster M=ba^{m-1}. Hier wird immer das ganze Muster mit dem Text verglichen bis an der ersten Stelle ein Missmatch auftritt. Nach einem solchen Missmatch kann das Muster (mittels Bad-Character-Heuristik) aber nur um eine Stelle nach rechts verschoben werden.

Beispielcode in C[Bearbeiten]

In der Praxis wendet der Algorithmus beide Regeln an und nutzt immer die Regel, die das Muster am weitesten springen lässt, für die „Gute Regel“ sowie für die „Schlechte Regel“ erstellt man zu Beginn der Suche jeweils eine Sprungtabelle (siehe „skip table“ und „next table“ im Code).

Im folgenden Quellcode geschieht das Anlegen der „Gute Regel“-Tabelle (next[]) im (unwahrscheinlichen) schlechtesten Fall in O\left(m^2\right), was bei nicht zu großen Mustern zu vernachlässigen ist. Die Suche nach dem Suffix für die „Schlechte Regel“-Tabelle lässt sich beispielsweise über den KMP-Algorithmus machen, was hier aber der Übersichtlichkeit wegen vermieden wird. Damit liegt folgender Algorithmus in O\left(n + m^2\right).

Lässt man sich die Anzahl der benötigten Vergleiche ausgeben, so sind dies bei einem großen Alphabet erstaunlich wenige und der Boyer-Moore-Algorithmus ist beispielsweise dem Knuth-Morris-Pratt-Algorithmus vorzuziehen.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
 
 
char * boyerMoore(char * p /* pattern */, char * s) {
 
    int plen = strlen(p), slen = strlen(s);
 
    if (plen > slen) {
        return NULL;
    }
 
    int skip[UCHAR_MAX+1];
    int i, j, k, * next;
 
    /* calc skip table („bad rule“) */
    for (i = 0; i <= UCHAR_MAX; i++) {
         skip[i] = plen;
    }
 
    for (i = 0; i < plen; i++) {
         skip[(unsigned char)p[i]] = plen - i - 1;
    }
 
 
    /* calc next table („good rule“) */
    next = (int*)malloc((plen+1) * sizeof(int));
 
    for (j = 0; j <= plen; j++) {
        for (i = plen - 1; i >= 1; i--) {
            for (k = 1; k <= j; k++) {
                if (i - k < 0) {
                    break;
                }
                if (p[plen - k] != p[i - k]) {
                    goto nexttry;
                }
            }
            goto matched;
nexttry:
            ;
        }
matched:
        next[j] = plen - i;
    }
 
    plen--;
    i = plen; /* position of last p letter in s */
 
    while (i < slen) {
        j = 0; /* matched letter count */
        while (j <= plen) {
            if (s[i - j] == p[plen - j]) {
                j++;
            } else {
                i += skip[(unsigned char)s[i - j]] > next[j] ? skip[(unsigned char)s[i - j]] - j : next[j];
                goto newi;
            }
        }
        free(next);
        return s + i - plen;
newi:
        ;
    }
    free(next);
    return NULL;
}
 
int main() {
    char * s = "ababbbcabaabbbabababbbababbba";
    char * p = "ababbba";
    char * found = boyerMoore(p,s);
 
    while (found != NULL) {
        printf("%.7s found @ position %d\n", found, found - s + 1);
        found = boyerMoore(p,found + 1);
    }
    return 0;
}

Literatur[Bearbeiten]

Weblinks[Bearbeiten]