CIE-Normvalenzsystem

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Das CIE-Normvalenzsystem oder CIE-Normfarbsystem wurde von der Internationalen Beleuchtungskommission (CIE – Commission internationale de l’éclairage) definiert, um eine Relation zwischen der menschlichen Farbwahrnehmung (Farbe) und den physikalischen Ursachen des Farbreizes (Farbvalenz) herzustellen. Es erfasst die Gesamtheit wahrnehmbarer Farben. Unter Nutzung der Farbraumkoordinaten ist auch die Bezeichnung Yxy-Farbraum oder CIE-Yxy gebräuchlich, sowie vorrangig im englischsprachigen Bereich auch Tristimulus-Farbraum.

Der CIE-Normalbeobachter von 1931 und 1964[Bearbeiten]

2°- und 10°-Spektralfarbenzug im Vergleich
RGB_Farbraum mit den drei Lichtfarben, die 1931 verwendet wurden. Der Weißpunkt E liegt bei x=y=0,33
Die Gewichtungen der drei Primärfarben für die intensiven Farben entlang des Außenrandes

Bei dem 1931 entwickelten CIE-Normvalenzsystem (CIE 1931) wurden Messwerte zu Grunde gelegt, die auf einen Normalbeobachter bezogen sind. Dieser „gemittelte“ Beobachter blickt auf eine Fläche mit einem Sichtfeld von 2° mittig zur Hauptblickrichtung. Dieses Feld hat etwa die Größe einer 1-Euro-Münze, die man mit ausgestrecktem Arm vor sich hält. Diese Begrenzung wurde aus der Größe der Zone der höchsten Dichte der farbempfindlichen Photorezeptoren im Auge abgeleitet. Die Zapfen liegen auf der Netzhaut konzentriert im Bereich der besten Farbsichtigkeit. Das normale Sichtfeld der menschlichen Wahrnehmung ist allerdings größer als dieser 2°-Bereich. 1964 wurde deshalb das System für einen Normalbeobachter mit 10°-Sichtfeld eingeführt. Das CIE(1964)-Farbsystem bezieht sich auf das „Weitwinkel“-Sichtfeld des Menschen, dies ist die Größe eines A4-Blattes in normalem Betrachtungsabstand von 30 cm. Im 10°-Randbereich nimmt die Anzahl der Zapfen pro Fläche schon deutlich ab, die Bezugswerte sind entsprechend andere.

Als Methode wurde die visuelle Farbnachstellung durch Beobachter eingesetzt, die eine vorgegebene Farbfläche nach ihrem individuellen Eindruck auf „gleich“ stellen sollten. Die Mischungsversuche wurden von W. David Wright (1928) und John Guild (1931) ausgeführt.[1] Aus den genannten physiologischen Überlegungen hatten sie die 2°-Sichtfläche gewählt. Es wurde ein geteilter Schirm verwendet, auf dessen A-Seite eine bestimmte Farbe projiziert wurde. Auf die B-Seite wurden drei Strahler in den Lichtfarben Rot, Grün und Blau projiziert. Diese überlappten sich und strahlten in jeweils einer Grundfarbe. Die Helligkeit jedes Farbstrahlers war einstellbar, während ihre Wellenlänge durch definierte Filter fest stand.

Wright und Guild wählten dafür 546,1 nm (grün) and 435,8 nm (blau), weil diese Spektrallinien durch Quecksilberdampflampen einfach erzeugt und durch Interferenzfilter getrennt werden können. Für 700 nm (rot) wurden am Ende der 1920er Jahre mangels starker Spektralfarben Glühlampen mit einfachem Farbfilter eingesetzt, weil im roten Bereich kleine Abweichungen der Wellenlänge sich weniger im Ergebnis bemerkbar machen.

Der Beobachter sollte durch Ändern der Helligkeit an drei verfügbaren Lichtquellen (B-Seite) einen jeweils vorgegebenen Farbeindruck der A-Seite aus seinem subjektiven Empfinden heraus nachstellen. Die zugrundeliegende Dreifarbentheorie war zu diesem Zeitpunkt eingeführt und besagte mit drei geeigneten Lichtquellen lässt sich jeder Lichteindruck darstellen. Es wurden an den drei Lichtquellen der B-Seite Einstellwerte für Grün, Blau, Rot ermittelt, die als Maß der auf der A-Seite vorgegebenen Lichtfarbe benutzt werden konnten. Bei einigen vorgegebenen Testfarben im Bereich der Grün-Blau-Einstellungen konnte vom Beobachter allerdings die volle Übereinstimmung nicht durch seine Einstellmöglichkeiten (an der B-Seite) erreicht werden. Der Beobachter musste deshalb auf der A-Seite (also auf der vorgegeben) noch rotes Licht „hinzuregeln“. Ein solcher Skalenwert wurde im Ergebnisbogen als negativer Rot-Wert eingetragen. Dem Zufügen auf der B-Seite entsprach ein „Wegnehmen von rotem Licht“ auf der A-Seite. Auf diese Weise konnte der gesamte Bereich der vom Menschen wahrnehmbaren Farbreize numerisch erfasst werden.

Bis heute ist die CIE-Normfarbtafel von 1931 das meistverwendete wahrnehmungsbezogene Farbbeschreibungssystem. Als CIE-System wird auch heute noch das 2°-Sichtfeld-System unterstellt, sofern nichts anderes angegeben ist. Die Form der Farbvalenz-Fläche in den Normfarbtafeln der beiden Systeme (2°- und 10°-Beobachter) ist geringfügig verschieden.

Das untere Bild zeigt die Gewichtungen der drei Primärfarben für die gesättigten Farben entlang des Außenrandes der Normfarbtafel. Da kein Farbdisplay oder Projektor rote Farbe mit negativer Intensität erzeugen kann, können Farben im Bereich Grün-Türkis nur ungesättigt, also zu blass dargestellt werden. Wählt man andere Grundfarben, verschiebt sich das Farbdreieck und es kommt zu Farbverfälschungen. Für jede Wahl gibt es in der Natur Farben, die außerhalb des Dreiecks liegen und deshalb prinzipiell nicht dargestellt werden können (Gamut).

Tristimulus[Bearbeiten]

Insbesondere im englischsprachigen Bereich werden die drei Grundwerte X, Y und Z als Tristimulus bezeichnet. In dieser Bedeutung sind es die drei Anteile der (hierfür) definierten normierten Grundfarben. Jede Farbe lässt sich mit einem solchen Zahlentripel kennzeichnen. Entsprechend ist für das CIE-Normsystem die Bezeichnung Tristimulus-System üblich. Die 1931 gemessenen Kurven heißen auch Tristimuluskurven. Ein Smaragdgrün hat danach die Tristimuluswerte {X, Y, Z} = {22,7; 39,1; 31,0}. Dazu werden für jede Wellenlänge im Abstand von 20 nm, 10 nm, 5 nm oder 1 nm die tabellierten Werte von x,y,z mit der spektralen Energie, die von der Lichtquelle emittiert wird, multipliziert. Diese Werte werden an jeder Wellenlängenposition mit der Remission der Probe multipliziert. Diese Remission wird gegen einen ideal reflektierenden Diffusor gemessen. Üblicherweise handelt es sich dabei um den BaSO4-Standard, mitunter auch um einen gegen Gebrauchsspuren beständigeren Polytetrafluorethylen(Teflon)-Standard. Die Remission dieses Diffusors wird an jeder beprobten Wellenlänge auf 100 gesetzt. Letztlich werden die Summen aller drei Wertereihen summiert und durch die Summe der spektralen Energien y dividiert, weil Y als perfektes Weiß nach Definition gleich 100 sein muss. Die CIE-Publication 15.2 von 1986 enthält die entsprechenden Informationen zur XYZ-Farbenskala und zur Funktion des CIE-Normalbeobachters.

Bedingt durch die Messtechnik vom Anfang des 20. Jahrhunderts wurden in den Erkenntnisprozess zur Beschreibung des Phänomens Farbe auch die imaginären Farben als Denkkonstruktion eingeführt.

Die Normfarbtafel[Bearbeiten]

Die CIE-Normfarbtafel. Die Farben der Grafik stellen eine grobe Orientierung innerhalb des Farbraumes dar. Die auf Ausgabegeräten darstellbaren Farben beschränken sich auf eine dreieckige Fläche im Inneren der Grafik. Die Abbildung ist farblich auf das Monitor-Gamut herunter skaliert. Die sattest-möglichen (kräftigsten) Farbtöne befinden sich an den Kanten des Dreiecks.

Um den vom Betrachter wahrgenommenen dreidimensionalen Farbraum übersichtlicher (nach Farbart) darstellen zu können, wurde die zweidimensionale CIE-Normfarbtafel entwickelt. Dabei wird die dritte Komponente z (im Falle des rechts stehend abgebildeten Diagramms Blau) für jeden Punkt der Farbtafel rechnerisch aus den beiden anderen durch die Beziehung x + y + z = 1 ermittelt. Die hufeisenförmige Fläche möglicher Farben ist bei der CIE-Normfarbtafel auf einem Koordinatensystem aufgetragen, auf dem x- und y-Anteil (der CIE-genormten theoretischen Grundfarben X (Rot), Y (Grün) und Z (Blau), (siehe CIE XYZ-Farbraum)) einer beliebigen Farbe P direkt abgelesen werden können. Durch die Grundbedingung x + y + z = 1 lässt sich der z-Anteil jeweils rechnerisch (z = 1 − x − y) ermitteln. Die Gesamtheit möglicher Farben (ohne Beachtung der Hell-Dunkel-Varianten) werden durch die das Hufeisen umgrenzende Spektralfarblinie (spektral reine Farben) sowie die untere Purpurlinie eingefasst.

Zentraler Bezugspunkt der Tafel ist der in jeder Farbmesssituation wesentliche Weißpunkt W. Der im Diagramm mit W gekennzeichnete Punkt ist derjenige theoretische Weißpunkt, der alle drei Farben zu je 1/3 (x, y und z = 0,333…) repräsentiert. Abhängig von der Beleuchtungssituation kann sich der Weißpunkt praktisch überall innerhalb des Hufeisens befinden. Technisch von Bedeutung ist nur die Black-Body-Kurve. Auf deren Verlauf sind die Farben als Temperatur eines idealen Strahlers (schwarzer Körper) in Kelvin angegeben. Ausgehend vom Weißpunkt können alle als farbtongleich empfundenen Farben auf einer Linie durch den Punkt P abgelesen werden. Über den verwendeten Farbraum hinaus (hier ist der Adobe-RGB Farbraum dargestellt) kann die für die spezielle Situation entsprechende Spektralfarbe auf der Spektralfarblinie (P’) abgelesen werden. Auf der genau gegenüberliegenden Seite von W können die Komplementärfarben auf der verlängerten Linie W-Q abgelesen werden. Der Punkt Q' stellt dabei die äußerste (reinste) Komplementärfarbe dar, der in diesem Fall durch den Schnitt mit der Purpurlinie definiert wird.

CIE-genormte Empfindlichkeitskurven der drei Farbrezeptoren X (rot), Y (grün) und Z (blau), dies sind die Tristimuluskurven in X,Y,Z
CIE-genormte Empfindlichkeitskurven – dargestellt als Anteil der jeweiligen Spektralfarbe am entsprechenden Grundfarbton X (Rot), Y (Grün) oder Z (Blau)

Exakt definiert wird das CIE-Farbsystem lediglich durch die ursprünglich experimentell ermittelten relativen Empfindlichkeiten der drei Farbrezeptoren des menschlichen Farbwahrnehmungsapparates (der sog. Normalbeobachter) für jede sichtbare Spektralfarbe. Die Empfindlichkeitskurven sind von Person zu Person gewissen Schwankungen unterworfen, als Mittelwerte jedoch als sog. Normalbeobachter (CIE Standard Observer) festgelegt.

Aus der Messung der spektralen Empfindlichkeit der drei menschlichen Zapfen lässt sich nach gleicher Vorlage ein physiologischer Farbraum bestimmen. Die drei Zapfen werden nach ihrem Empfindlichkeitsmaximum als L-, M-, S-Zapfen, für long-middle-short benannt. Der daraus gebildete Farbraum, der ebenfalls alle wahrnehmbaren Farben repräsentiert heißt LMS-Farbraum. Bei entsprechender Normierung lässt sich auch hierfür eine Farbarttafel angeben. Normiert wird durch Division mit der Summe L+M+S. So erhält man hierfür die Werte l = L/(L+M+S), m = M/(L+M+S), s = S/(L+M+S), die die Beziehung l + m + s = 1 erfüllen.

Das Bauprinzip[Bearbeiten]

Auf dem Rand dieser Fläche (Spektralfarbenzug) befinden sich die „reinen“ Farben mit der höchsten Sättigung. Die Verbindungslinie zwischen Violett (≤ 420 nm) und Rot (≥ 680 nm) wird als Purpurgerade bezeichnet. Eine weitere Kurve ist die der Farben thermischer Strahlungsquellen. Sie beginnt bei gesättigten Rottönen für niedrige Temperaturen um die 900 K, nimmt für Temperaturen zwischen 5000 und 6500 K eine weitgehend weiße Farbe an und wird für noch höhere Temperaturen bläulich (aber niemals ein reines Blau).

Sättigung

eines Punktes (mithin eines Farbtones) des CIE-Farbraumes wird ermittelt, indem vom Neutralpunkt W zum Farbpunkt eine Gerade gelegt wird. Das Verhältnis aus Abstand Weißpunkt-Farbort (W-F) und Abstand Weißpunkt-äußerer Rand (W-P) ist das Maß für die Sättigung. Jeder Farbort auf dem Spektralfarbzug hat somit die Sättigung 1 (entsprechend 100 %).

Farbton

wird als bunttongleiche Wellenlänge angegeben: Die Gerade vom Weißpunkt (W) über den Farbort (F) zum Rand des Spektralzuges (P) endet an dieser Wellenlänge. Purpurtöne werden durch die konträre Wellenlänge bei Verlängerung der Geraden über den Weißpunkt hinaus bezeichnet.

Hellbezugswert

Die xy-Farbartebene ist nur die Projektion des zum System gehörenden Farbkörpers nach Rösch. Die notwendige dritte Größe für die Festlegung einer Farbe ist der Hellbezugswert A, dieser ist durch Definition identisch und größengleich mit dem Helligkeitsparameter Y. Daraus resultiert auch die Bezeichnung als Yxy-Farbraum.

Die psychologische und künstlerische Kategorie Gegenfarbe (Komplementärfarbe) erreicht man, indem man zum Farbort in der x-y-Menge durch Spiegelung am Weißpunkt W den Farbort der Gegenfarbe ermittelt. Nach dem gleichen Verfahren erhält man deren Sättigung und deren bunttongleiche Wellenlänge.

Metamerie[Bearbeiten]

Auf der projizierten Fläche f ist der X- und Y-Anteil einer Farbe direkt ablesbar. Die Spektralfarben (schraffiert) liegen dabei im Bereich außerhalb positiver Farbanteile X und Y.

Kunstmalern war schon lange bekannt, dass sich Farben aus drei Komponenten ermischen lassen. Die Theorie hierzu stellten Hermann von Helmholtz und Thomas Young auf:

Die von Helmholtz und Young aus der praktischen Erfahrung entwickelte Dreifarbentheorie erfordert, dass im menschlichen Auge drei verschiedene Farbrezeptoren vorhanden sind. Diese müssen zudem ein bestimmtes Absorptionsspektrum aufweisen. Für die Wahrnehmung ist dies andererseits die spektrale Empfindlichkeit des Subjektes. Jedes Absorptionsspektrum hat ein Maximum bei einer bestimmten Wellenlänge. Die visuelle Wahrnehmung setzt sich aus drei Komponenten zusammen. So kann jeder wahrnehmbare Farbeindruck aus dem Empfindungsmaximum entsprechenden Spektralfarben ermischt werden. Allgemeiner formulierte Hermann Günther Graßmann in seinem Ersten Graßmannschen Gesetz, dass jede Farbe durch drei (hinreichend unabhängige) Größen eindeutig beschrieben ist. Dies können beispielsweise sein:

  • Helligkeit, Farbton und Farbsättigung oder
  • Intensität von Rot, Grün und Blau.

Das „Auge“ (und der folgende Wahrnehmungsapparat) ordnet beliebig „komplexe“ Lichtspektren durch „wenige“ Parameter. Lichter mit unterschiedlichen Spektren (bei geeigneter – eben metamerer – Intensität) erzeugen dadurch den gleichen Farbeindruck. Die Farbreize des fortlaufenden sichtbaren Spektrums von 380 nm bis 780 nm werden auf die Wahrnehmungsgröße der drei Farbvalenzen abgebildet.

Auf der Fläche F mit X + Y + Z = 1 stellt jeder Punkt ein Verhältnis der Grundfarben X,Y und Z zueinender dar. Die projizierte Fläche f verzichtet auf die Z-Komponente, die sich rekursiv aus X und Y ergibt.
Zur Vermeidung negativer Werte wurden bei der Normfarbtafel theoretisch definierte Grundfarbvalenzen festgelegt, sodass dennoch alle wahrnehmbaren Spektralfarben erfasst sind.

Alle wahrnehmbaren Farben können also als Ortsvektoren in einem dreidimensionalen Farbraum dargestellt werden. Die drei Koordinaten eines jeden Punktes im Farbraum sind das Maß der Intensität der Farbkomponenten Rot (R), Grün (G) und Blau (B). Die Länge eines Vektors bestimmt die Gesamtintensität des Lichts, während seine Raumrichtung das Mischungsverhältnis der drei Grundfarben wiedergibt. Lässt man die Intensität außer Acht, so können alle möglichen Farbeindrücke auf einer Dreiecksfläche F im Raum dargestellt werden, auf der für jeden Punkt R + G + B = 1 gilt. Projiziert man diese auf die Fläche, die durch die Achsen für Rot und Grün aufgespannt ist, so ergibt sich eine einfache Möglichkeit, die Verhältnisse der drei Farbwerte grafisch darzustellen: Die Rot (= X)- und Grün (= Y)-Komponenten sind direkt ablesbar, während die Blau (= Z)-Komponente gemäß B = 1 − R − G berechenbar ist.

Beim Versuch, alle vorhandenen Valenzen von Spektralfarben auf der so entstandenen Grafik einzutragen (gestrichelte Linie B-G-R – geschnitten mit unserer Linie in P’), fällt – unabhängig vom gewählten Spektralfarbtrio – auf, dass die (reinen) Spektralfarben jeweils außerhalb der möglichen Komponenten-Verhältnisse lägen.

Es ergeben sich negative Einstellwerte für fast alle Spektralfarben außer bei den im System definierten Primärfarben. Um aus den drei Primärfarben ein spektrales Cyan (C)' zu erzeugen, gilt damit in Farbvalenzen beschrieben:

Blau + Grün ≡ spektrales Cyan + etwas Rot

Die Zahlenwerte der Koordinaten, also die absoluten Beträge des Farbortvektors in diesem Farbraum, können mathematisch korrekt umgeformt werden.

spektrales Cyan ≡ Blau + Grün – etwas Rot

Für den praktischen Gebrauch entsteht also die Anforderung, aus dem „blauen“ und dem „grünen“ (in erforderlicher Intensität) etwas „rotes“ Licht wegzulassen, um das gewünschte Cyan zu erhalten. Mit solchen Umformungen ist es möglich, alle Farben in einem (zunächst theoretischen) Farbraum anzuordnen. Dadurch verschiebt sich etwa ein beliebiger RGB-Farbraum einfach ins Innere eines solchen Gesamtfarbraumes.

Farbbezeichnungen nach dem Farbtonkreis von Müller in der Normfarbtafel

Praktische Erwägungen[Bearbeiten]

Die Black-Body-Kurve, Standardbeleuchtungen und einige RGB/CMYK-Farbräume in der CIE-Normfarbtafel

Das international eingeführte CIE-Normvalenzsystem ist die Grundlage der meisten modernen Farbmess- und Reproduktionssysteme. Auf ihm beruht auch der in der Computergrafik weit verbreitete Standard-Lab-Farbraum. Dieser ist durch aus Gründen der Physiologie der Wahrnehmung logarithmische und parametrisch aus dem XYZ-Farbraum auf L*a*b* verzerrt, so wird das Unterscheidungsvermögen verschiedener Farbreize besser dargestellt.

Die deutsche Umsetzung der internationalen CIE-Norm ist in der DIN 5033-3 festgelegt.

Kritik

Das XYZ-System wurde in den Jahren bis 1931 erstellt. Die damalige Präzision für exakte wissenschaftliche Zwecke ist unter heutigen technischen Möglichkeiten unzureichend. Die zugrunde gelegten Empfindlichkeitskurven sind das Resultat von Messprotokollen, deren Berechtigung hinterfragt werden kann. Zur Mittelung der Daten wurden Werte aus unterschiedlichen Quellen genutzt, diese wurden zudem extrapoliert und (wegen unzulänglicher Rechentechnik) mit einem Weichzeichnungsfilter geglättet. So könnten Fehler in der Helligkeitskurve Vλ entstanden sein. Der Fehler könnte bei einer Wellenlänge unterhalb 400 nm sogar eine Größenordnung von 10 erreichen. Auf jeden Fall sind die tabellierten Kurven mit Vorbehalt zu nutzen, denn heute werden die Wellenlängen in 1-nm-Schritten angegeben und die Abszissenwerte in mehreren Nachkommastellen. Jedoch waren die Ursprungsdaten nur mit einem Wert in einem Intervall von etwa 10 nm angegeben. Um vermutete Ungenauigkeiten der Zahlenwerte zu umgehen wurden zahlreiche Farbräume mit mathematischen Umrechnungen und Kniffen versehen, dennoch sind die XYZ-Werte immer noch Grundlage.

Die Standardbeleuchtung[Bearbeiten]

Das CIE-Normvalenzsystem wurde ursprünglich in Hinsicht auf Beleuchtungsfragen entwickelt. Das System erlaubt prinzipiell jede denkbare Kombination an X-, Y- und Z-Werten. Um eine normierte Übersicht der Farben zu erreichen wurden neutralweiße Normlichtfarben definiert. Aus Gründen der Farbwahrnehmung befinden sich diese auf der Black-Body-Kurve, da dies mit einer Farbtemperatur verbundene Beleuchtungen sind.

Vor der heutigen Entwicklung der Rechentechnik war eine Darstellung der Werte als Tabelle nötig. Um sie vergleichbar zu machen wurden die Intensitätswerte Sλ der Normlichtarten auf S560 nm = 100 % normiert, weshalb bei farbmetrischen Berechnungen eine geeignete Rückrechnung nötig wird.

CIE-Normbeleuchtungen x-Wert y-Wert Bemerkung
   Ausgangsnormlichtarten
CIE-Normbeleuchtung A 0,4476 0,4074 angelehnt an den Planckschen Strahler im Vakuum bei 2856 K
CIE-Normbeleuchtung B 0,3484 0,3516 ausgesetzte Norm für Tageslicht, durch D65 ersetzt. Bei der Definition 1931 wurde das Licht einer Glühlampe durch Vorsetzen einer Kupfersulfatküvette als Tageslicht genormt.
CIE-Normbeleuchtung C 0,3101 0,3162 soll das mittlere Tageslicht repräsentieren (~ 6800 K), kein CIE-Standard mehr
CIE-Normbeleuchtung E 1/3 1/3 Weißpunkt des energiegleichen Punktes; X = Y = Z mit exakt gleichen Anteilen
   neuere auf die Farbtemperatur bezogene Normlichtarten
D50 0,3457 0,3585 Weißpunkt für Wide-Gamut-RGB und Color-Match-RGB
D55 0,3324 0,3474 Lichtspektrum ähnlich dem von direktem Sonnenlicht
D65 0,312713 0,329016 Als mittleres Tageslicht entspricht es einem Mittagshimmel am Nordfenster. Das Spektrum hat eine ähnlichste Farbtemperatur von 6504 Kelvin. Genutzt wird dieses Normlicht als Weißpunkt für sRGB, Adobe-RGB und die PAL/SECAM-TV-Norm. Wie die anderen D-Lichtarten wird D65 aus den Funktionen S0, S1 und S2 gebildet und kann nicht künstlich hergestellt werden.
D75 0,2990 0,3149 Entspricht einer korrelierten Farbtemperatur von 7510K.
D93 0,2848 0,2932 Weißpunkt für besondere blaue Leuchtdisplays mit einer korrelierten Farbtemperatur von etwa 9312 K. Dies entspricht etwa dem wolkenlosen Himmel zur „blauen Stunde“.

Umrechnung der Farbräume[Bearbeiten]

Da mit der Aufstellung des CIE-Farbraumes die Wahrnehmungskategorie „Farbe“ zahlenmäßig erfassbar ist, lassen sich Farbvalenzen auch in anderen Farbräumen beispielsweise durch Umrechnung mit entsprechenden Matrizenoperationen beschreiben.

Beispielhaft ist hier die Umrechnung der Koordinaten des sRGB-Farbraums in die Tristimuluskoordinaten X, Y, Z angegeben.[1]


\begin{pmatrix}
  X \\
  Y \\
  Z
\end{pmatrix}
=
\begin{pmatrix}
  0{,}4124 & 0{,}3576 & 0{,}1805 \\
  0{,}2126 & 0{,}7152 & 0{,}0722 \\
  0{,}0193 & 0{,}1192 & 0{,}9505
\end{pmatrix}
\cdot
\begin{pmatrix}
  R \\
  G \\
  B
\end{pmatrix}

Wenn (X + Y + Z) = 0 ist, sind y, x ebenfalls 0. Andernfalls wird normiert mit:


x = \frac{X}{X+Y+Z}; \quad
y = \frac{Y}{X+Y+Z}

Literatur[Bearbeiten]

  •  David Falk, Dieter Brill, David Stork: Seeing the Light. New York 1986, ISBN 0-471-60385-6 (Kapitel 9: Color).
  •  David Falk, Dieter Brill, David Stork: Ein Blick ins Licht. ISBN 3-7643-2401-5 (Übersetzung des obigen, nicht mehr im Handel).
  •  Commission Internationale De L’Eclairage: CIE 15:2004 -– Colorimetry. ISBN 3-901906-33-9.

Weblinks[Bearbeiten]

 Commons: Normfarbtafel – Sammlung von Bildern, Videos und Audiodateien

Einzelnachweise[Bearbeiten]

  1. a b Farbmanagement Grundlagen.pdf
Farb-Check-RGB.png

Die in diesem Artikel angezeigten Farben sind nicht farbverbindlich und können auf verschiedenen Monitoren unterschiedlich erscheinen.
Eine Möglichkeit, die Darstellung mit rein visuellen Mitteln näherungsweise zu kalibrieren, bietet das nebenstehende Testbild (nur wenn die Seite nicht gezoomt dargestellt wird): Tritt auf einer oder mehreren der drei grauen Flächen ein Buchstabe („R“ für Rot, „G“ für Grün oder „B“ für Blau) stark hervor, sollte die Gammakorrektur des korrespondierenden Monitor-Farbkanals korrigiert werden. Das Bild ist auf einen Gammawert von 2,2 eingestellt – den gebräuchlichen Wert für IBM-kompatible Computer. Apple-Macintosh-Rechner hingegen verwenden bis einschließlich System 10.5 („Leopard“) standardmäßig einen Gammawert von 1,8, seit dem System 10.6 („Snow Leopard“) kommt Gamma 2,2 zum Einsatz.