CL-20

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Strukturformel
Struktur von CL-20
Allgemeines
Name CL-20
Andere Namen
  • Hexanitroisowurtzitan
  • HNIW
  • 2,4,6,8,10,12-Hexanitrohexaazaisowurtzitan
  • Octahydro-1,3,4,7,8,10-hexanitro-5,2,6- (iminomethenimino)-1H-imidazo[4,5-b]pyrazin
Summenformel C6H6N12O12
CAS-Nummer 135285-90-4
Kurzbeschreibung

weißes Pulver[1]

Eigenschaften
Molare Masse 438,19 g·mol−1
Aggregatzustand

fest

Dichte

1,98 g·cm−3[2]

Löslichkeit
Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung [3]
keine Einstufung verfügbar
H- und P-Sätze H: siehe oben
P: siehe oben
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.
Vorlage:Infobox Chemikalie/Summenformelsuche vorhanden

CL-20, auch als Hexanitroisowurtzitan bzw. HNIW bekannt, ist einer der stärksten bekannten chemischen Sprengstoffe und gehört zur Gruppe der Nitramine. Die enorme Sprengkraft liegt sowohl an seiner hohen Dichte als auch an der hohen inneren Spannung des Moleküls.

Für eine kommerzielle Nutzung ist er wegen der aufwendigen Synthese und der damit verbundenen hohen Produktionskosten bisher zu teuer.

Geschichte[Bearbeiten]

Entdeckt wurde CL-20 1987 von Forschern der Naval Air Warfare Center Weapons Division in China Lake, Kalifornien. Eigentlich wollten sie einen sehr starken Initialsprengstoff herstellen, um eine kleinere Zündkapsel zu produzieren. Er ist der derzeit stärkste und sicherste Sprengstoff, der mit dieser Detonationsgeschwindigkeit existiert.

Herstellung[Bearbeiten]

Die Synthese von HNIW erfolgt in einer Dreistufenreaktion: Zuerst lässt man Benzylamin (1) mit Glyoxal (2) unter Säurekatalyse reagieren, wobei in einer bemerkenswerten Kondensationsreaktion der Hexaazaisowurtzitan-Käfig aufgebaut wird: man erhält das Hexabenzylderivat (3). Im zweiten Schritt wird 3 einer Palladium-katalysierten Hydrierung in Anwesenheit von Acetanhydrid unterworfen: Vier der sechs Benzylgruppen werden zu Toluol reduziert, an ihre Stelle treten Acetylgruppen. (Das zugesetzte Brombenzol dient dazu, stetig geringe Mengen katalytisch wirkende Bromwasserstoffsäure freizusetzen). Man erhält 4, das dann stufenweise zuerst mit Nitrosoniumtetrafluoroborat (NO+BF4), dann mit Nitroniumtetrafluoroborat (NO2+BF4) zu HNIW (5) nitriert wird. In neueren Patenten wird behauptet, die Nitrierung auch mit viel billigerer Salpeter- oder Nitriersäure durchführen zu können.

Synthese von CL20


Eigenschaften[Bearbeiten]

Es existieren von CL-20 bzw. HNIW fünf Polymorphe: α-HNIW, β-HNIW, γ-HNIW, ε-HNIW und ζ-HNIW. Dabei ist ε-HNIW das jenige Polymorph mit der höchsten Kristalldichte und Stabilität.[4] Als Sprengstoff ist CL-20 etwa 14 % stärker als Oktogen, seine Detonationsgeschwindigkeit liegt bei maximal 10,3 km s−1. Damit ist der Stoff den brisantesten Mischungen aus Tetranitromethan und Toluol (Detonationsgeschwindigkeiten: 9–10 km s−1) mit kleinerer Dichte nicht überlegen, die in Durchschlags-, Stauchung- und Bleiblockversuchen beträchtlich mehr Energie äußern als Oktogen. Seine Sprengkraft beträgt 1,9 TNT-Äquivalente (Sprengkraft im Verhältnis zur Sprengkraft von TNT). Die Verbindung ist mit einer Schlagenergie von 4 Nm schlagempfindlich, sowie mit einer Reibkraft von 48 N reibempfindlich.[5] Die thermische Stabilität sowie der Dampfdruck von CL-20 sind deutlich geringer als die von Oktogen.

Einzelnachweise[Bearbeiten]

  1. a b c CL-20. In: Römpp Online. Georg Thieme Verlag, abgerufen am 24. März 2014.
  2. Sprengstoffe – Konstruktion und Destruktion, Vortrag von Marguerita Duchoslav und Johannes Priller ab WS2006/2007, Didaktik der Chemie, Universität Bayreuth (Stand 20. September 2010), abgerufen 25. Dezember 2011
  3. Diese Substanz wurde in Bezug auf ihre Gefährlichkeit entweder noch nicht eingestuft oder eine verlässliche und zitierfähige Quelle hierzu wurde noch nicht gefunden.
  4. T. P. Russell, P. J. Miller, G. J. Piermarini, S. Block: Pressure/temperature phase diagram of hexanitrohexaazaisowurtzitane in J. Phys. Chem. 97 (1993) 1993–1997, doi:10.1021/j100111a043.
  5. Köhler, J.; Meyer, R.; Homburg, A.: Explosivstoffe, zehnte, vollständig überarbeitete Auflage, Wiley-VCH, Weinheim 2008, ISBN 978-3-527-32009-7.

Weblinks[Bearbeiten]