Carl Friedrich Gauß

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Gauß und Gauss sind Weiterleitungen auf diesen Artikel. Für weitere Personen und Bedeutungen siehe Gauß (Begriffsklärung).
Carl Friedrich Gauß

Johann Carl Friedrich Gauß (latinisiert Carolus Fridericus Gauss; * 30. April 1777 in Braunschweig; † 23. Februar 1855 in Göttingen) war ein deutscher Mathematiker, Astronom, Geodät und Physiker.

Seine überragenden wissenschaftlichen Leistungen waren schon seinen Zeitgenossen bewusst. Mit 18 Jahren entwickelte er die Grundlagen der modernen Ausgleichsrechnung und der mathematischen Statistik (Methode kleinster Quadrate), mit der er 1800 die Wiederentdeckung des ersten Asteroiden Ceres ermöglichte. Auf Gauß gehen die nicht-euklidische Geometrie, zahlreiche mathematische Funktionen, Integralsätze, die gaußsche Glockenkurve, erste Lösungen für elliptische Integrale und die gaußsche Osterformel zurück. 1807 wurde er zum Universitätsprofessor und Sternwartendirektor in Göttingen berufen und später auch mit der Landesvermessung des Königreichs Hannover betraut. Neben der Zahlen- und der Potentialtheorie erforschte er u. a. das Erdmagnetfeld und führte – 150 Jahre vor ihrer praktischen Verwirklichung – im Harz die erste Geoidstudie durch.

Bereits 1856 ließ der König von Hannover Gedenkmünzen mit dem Bild von Gauß und der Inschrift „Mathematicorum Principi“ (deutsch: „dem Fürsten der Mathematiker“) prägen. Da Gauß nur einen Bruchteil seiner Entdeckungen veröffentlichte, erschloss sich der Nachwelt die Tiefgründigkeit und Reichweite seines Werks erst, als 1898 sein Tagebuch (siehe unten) entdeckt und ausgewertet wurde.

Nach Gauß sind viele mathematisch-physikalische Phänomene und Lösungen benannt, mehrere Vermessungs- und Aussichtstürme, zahlreiche Schulen, außerdem Forschungszentren und wissenschaftliche Ehrungen wie die Carl-Friedrich-Gauß-Medaille der Braunschweigischen Akademie und die festliche Gauß-Vorlesung, die jedes Semester an einer deutschen Hochschule stattfindet.

Leben[Bearbeiten]

Eltern, Kindheit und Jugend[Bearbeiten]

Das Geburtshaus von Carl Friedrich Gauß in der Wilhelmstraße 30, im Zweiten Weltkrieg wurde es vollständig zerstört
Gedenktafel am ehemaligen Standort des Geburtshauses von Carl Friedrich Gauß in Braunschweig

Carl Friedrich war das einzige Kind der Eheleute Gebhard Dietrich (1744–1808) und Dorothea Gauß geborene Benze (1743–1839). Die Mutter Dorothea war die Tochter eines Steinmetzen aus Velpke, der früh starb, und wurde als klug, von heiterem Sinn und festem Charakter geschildert[1]. Gauß hatte zeitlebens enge Beziehungen zu seiner Mutter, die zuletzt bei ihm auf der Sternwarte in Göttingen wohnte. Sie arbeitete zunächst als Dienstmädchen, bevor sie die zweite Frau von Gebhard Dietrich Gauß wurde. Dieser hatte viele Berufe, er war unter anderem Gärtner, Schlachter, Maurer, Kaufmannsassistent und Schatzmeister einer kleinen Versicherungsgesellschaft. Einige Anekdoten besagen, dass bereits der dreijährige Carl Friedrich seinen Vater bei der Lohnabrechnung korrigierte. Später sagte Gauß von sich selbst, er habe das Rechnen vor dem Sprechen gelernt. Sein Leben lang behielt er die Gabe, selbst komplizierteste Rechnungen im Kopf durchzuführen.

Eine Anekdote, deren Ursprung auf die Erzählungen von Wolfgang Sartorius von Waltershausen[2][3] zurückgeht, beschreibt das frühe mathematische Talent des kleinen Carl Friedrich:

Im Alter von sieben Jahren sei Gauß in die Volksschule gekommen. Dort habe sein Lehrer Büttner den Schülern zur längeren Beschäftigung die Aufgabe gestellt, die Zahlen von 1 bis 100 zu addieren. Gauß habe sie allerdings nach kürzester Zeit gelöst, indem er 50 Paare mit der Summe 101 gebildet (1 + 100, 2 + 99, …, 50 + 51) und 5050 als Ergebnis erhalten habe. Er legte die Antwort mit den Worten in Braunschweiger Plattdeutsch „Ligget se“ (svw: „Hier liegt sie“) dem Lehrer auf den Tisch.

Die daraus resultierende Formel wird gelegentlich auch als „der kleine Gauß“ bezeichnet. Ob es dieses Ereignis war, oder auch andere mögliche Interpretationen im Raum stehen könnten: Gauß’ Lehrer Büttner hat jedenfalls seine außergewöhnliche mathematische Begabung erkannt und gefördert, indem er (u. a.) ein besonderes Rechenbuch aus Hamburg für ihn beschaffte und, unterstützt von seinem Assistenten Martin Bartels, dafür sorgte, dass Gauß 1788 das Gymnasium Martino-Katharineum besuchen konnte.

Als der Wunderknabe Gauß vierzehn Jahre alt war, wurde er dem Herzog Karl Wilhelm Ferdinand von Braunschweig bekanntgemacht. Dieser unterstützte ihn sodann finanziell und sorgte für seinen Lebensunterhalt. So konnte Gauß von 1792 bis 1795 am Collegium Carolinum studieren, das zwischen höherer Schule und Hochschule anzusiedeln ist und der Vorgänger der heutigen Technischen Universität in Braunschweig ist. Dort war es der Professor Eberhard August Wilhelm von Zimmermann, der sein mathematisches Talent erkannte, ihn förderte und ihm ein väterlicher Freund wurde.

Verschnörkelter Namenszug des siebzehnjährigen Gauß

Im Oktober 1795 wechselte Gauß an die Universität Göttingen. Dort hörte er bei Christian Gottlob Heyne Vorlesungen über klassische Philologie, die ihn damals genauso wie die Mathematik interessierte. Letztere wurde durch Abraham Gotthelf Kästner, der zugleich Dichter war, repräsentiert. Bei Georg Christoph Lichtenberg hörte er im Sommersemester 1796 Experimentalphysik und sehr wahrscheinlich im folgenden Wintersemester Astronomie. In Göttingen schloss er Freundschaft mit Wolfgang Bolyai.

Studienjahre[Bearbeiten]

Im Alter von neunzehn Jahren gelang es Gauß als Erstem, die Konstruierbarkeit des regelmäßigen Siebzehnecks zu beweisen – eine sensationelle Entdeckung, denn seit der Antike gab es auf diesem Gebiet kaum noch Fortschritte. Dies war wohl mit ein Grund, sich gegen Sprachen und Philosophie und für das Studium der Mathematik zu entscheiden, das er 1799 mit seiner Doktorarbeit an der Academia Julia (Universität in Helmstedt) abschloss. Die Mathematik war hier durch Johann Friedrich Pfaff – der sein Doktorvater wurde – gut vertreten, und nicht zuletzt legte Gauß’ Gönner, der Herzog von Braunschweig, Wert darauf, dass Gauß nicht an einer „ausländischen“ Universität promoviert werden sollte.

Nach seiner Promotion lebte Gauß in Braunschweig von dem kleinen Gehalt, das ihm der Herzog zahlte, und arbeitete an seinem Werk Disquisitiones Arithmeticae.

Einen Ruf an die Petersburger Akademie der Wissenschaften lehnte Gauß ab: nämlich aus Dankbarkeit gegenüber seinem Gönner, dem Herzog von Braunschweig, und wohl in der Hoffnung, dass dieser ihm eine Sternwarte in Braunschweig bauen würde. Nach dem plötzlichen Tod des Herzogs nach der Schlacht bei Jena und Auerstedt wurde Gauß im November 1807 Professor in Göttingen und Direktor der dortigen Sternwarte. Dort musste er Lehrveranstaltungen halten, gegen die er aber eine Abneigung entwickelte. Trotzdem wurden mehrere seiner Studenten einflussreiche Mathematiker, darunter Richard Dedekind und Bernhard Riemann.

Ehen, Familie und Kinder[Bearbeiten]

Tochter Therese

Im November 1804 verlobte er sich mit Johanna Elisabeth Rosina Osthoff (* 8. Mai 1780; † 11. Oktober 1809), der Tochter eines Weißgerbers aus Braunschweig, und heiratete sie am 9. Oktober 1805. Am 21. August 1806 wurde noch in Braunschweig ihr erstes Kind geboren, Joseph († 4. Juli 1873), benannt nach Giuseppe Piazzi, dem Entdecker des Zwergplaneten Ceres, dessen Wiederauffindung Gauß’ Bahnberechnung 1801 ermöglicht hatte. Joseph war später Artillerieoffizier des Königreichs Hannover und Direktor des Eisenbahnnetzes im Königreich. Nachdem er seinem Vater schon bei den geodätischen Arbeiten assistiert hatte, war er später an der kartografischen Landesaufnahme des Königreichs beteiligt. In Göttingen folgte am 29. Februar 1808 die Tochter Wilhelmine († 12. August 1840) und am 10. September 1809 Louis. Am 11. Oktober 1809 starb seine Frau Johanna an den Folgen der Geburt, Louis selbst starb am 1. März 1810. Durch diese Ereignisse fiel Gauß in eine lang dauernde Depression.

Am 4. August 1810 heiratete der Witwer Friederica Wilhelmine Waldeck (genannt Minna; * 15. April 1788; † 12. September 1831), Tochter des Göttinger Rechtswissenschaftlers Johann Peter Waldeck, die die beste Freundin seiner verstorbenen Frau gewesen war. Mit ihr hatte er drei Kinder: Eugen (* 29. Juli 1811; † 4. Juli 1896),[4][5] der die Rechte studierte und 1830 nach Amerika auswanderte, um dort als Kaufmann zu leben, Wilhelm (* 23. Oktober 1813; † 23. August 1879), der 1837 Eugen nachfolgte und ebenfalls nach Amerika auswanderte, um dort Landwirtschaft zu betreiben, und Therese (* 9. Juni 1816; † 11. Februar 1864). Im Sommer 1818 begann Minna zu kränkeln, was sich später als Tuberkulose herausstellte. Am 12. September 1831 starb auch sie. Von da an bis zum Tod von Gauß, der nun zum zweiten Mal Witwer war, führte seine jüngste Tochter Therese den Haushalt.

Grabstätte von Carl Friedrich Gauß auf dem historischen Albani-Friedhof, angrenzend an den Cheltenhampark in Göttingen

Späte Jahre[Bearbeiten]

In fortgeschrittenem Alter beschäftigte er sich zunehmend mit Literatur, nachdem er 1842 in die Friedensklasse des Ordens Pour le Mérite aufgenommen worden war, und führte auch Listen über die Lebenserwartung berühmter Männer (in Tagen gerechnet). So schrieb er am 7. Dezember 1853 an seinen Freund und Kanzler seines Ordens Alexander von Humboldt u. a.: „Es ist übermorgen der Tag, wo Sie, mein hochverehrter Freund, in ein Gebiet übergehen, in welches noch keiner der Koryphäen der exacten Wissenschaften eingedrungen ist, der Tag, wo Sie dasselbe Alter erreichen, in welchem Newton seine durch 30766 Tage gemessene irdische Laufbahn geschlossen hat. Und Newtons Kräfte waren in diesem Stadium gänzlich erschöpft: Sie stehen zur höchsten Freude der ganzen wissenschaftlichen Welt noch im Vollgenuss Ihrer bewundernswürdigen Kraft da. Mögen Sie in diesem Genuss noch viele Jahre bleiben.“[6]

Gauß war sehr konservativ und monarchistisch eingestellt, die Revolution von 1848 hieß er nicht gut. In Anlehnung an einen Platon zugeschriebenen Satz (griechisch Ὁ Θεὸς ἀεὶ γεωμετρεῖ, „Gott geometrisiert immer“)[7] pflegte er griechisch Ὁ Θεὸς ἀριθμητίζει („Gott arithmetisiert“) zu sagen.[8][9][10]

Tod[Bearbeiten]

Gauß starb am 23. Februar 1855 morgens um 1.05 Uhr in Göttingen. Heute liegt er dort auf dem Albani-Friedhof begraben, sein Gehirn jedoch wurde entnommen. Es wurde mehrfach mit verschiedenen Methoden untersucht, aber ohne einen besonderen Befund, der seine Rechenleistungen erklären würde (zuletzt 1998 durch eine Gruppe um Jens Frahm).[11] Es befindet sich heute separat, in Formalin konserviert, in der Abteilung für Ethik und Geschichte der Medizin der Medizinischen Fakultät der Universität Göttingen.

Im Herbst 2013 wurde an der Universität Göttingen eine Verwechslung aufgedeckt: Die zu diesem Zeitpunkt über 150 Jahre alten Gehirnpräparate des Mathematikers Gauß und des Göttinger Mediziners Conrad Heinrich Fuchs sind – wahrscheinlich schon bald nach der Entnahme – vertauscht worden. Beide Präparate wurden in der Anatomischen Sammlung der Göttinger Universitätsklinik in Gläsern mit Formaldehyd aufbewahrt. Das Originalgehirn von Gauß befand sich im Glas mit der Aufschrift „C. H. Fuchs“, und das Fuchs-Gehirn war etikettiert mit „C. F. Gauss“. Damit sind auch die bisherigen Untersuchungsergebnisse über das Gehirn von Gauß obsolet. Die Wissenschaftlerin Renate Schweizer befasste sich wegen der vom vermeintlichen Gehirn von Gauß angefertigten MRT Bilder, die eine seltene Zweiteilung der Zentralfurche zeigten, erneut mit den Präparaten und entdeckte, dass diese Auffälligkeit in Zeichnungen, die kurz nach Gauß' Tod erstellt wurden, fehlte.[12][13]

Nachwirkung[Bearbeiten]

Viele seiner Entdeckungen teilte er in Briefen Freunden mit oder notierte sie in seinen Tagebüchern, die erst 1898 entdeckt wurden.

Leistungen[Bearbeiten]

Begründung und Beiträge zur nicht-euklidischen Geometrie[Bearbeiten]

Lithographie von Gauß in den Astronomischen Nachrichten, 1828 von Bendixen

Gauß misstraute bereits mit zwölf Jahren der Beweisführung in der elementaren Geometrie und ahnte mit sechzehn Jahren, dass es neben der euklidischen noch eine andere, nicht-euklidische Geometrie geben muss.

Diese Arbeiten vertiefte er in den 1820er Jahren: Unabhängig von János Bolyai und Nikolai Iwanowitsch Lobatschewski bemerkte er, dass das euklidische Parallelenaxiom nicht denknotwendig ist. Seine Gedanken zur nichteuklidischen Geometrie veröffentlichte er jedoch nicht, vermutlich aus Furcht vor dem Unverständnis der Zeitgenossen. Als ihm sein Studienfreund Wolfgang Bolyai, mit dem er korrespondierte, allerdings von den Arbeiten seines Sohnes János Bolyai berichtet, lobt er ihn zwar, kann es sich aber nicht verkneifen zu erwähnen, dass er selbst schon sehr viel früher darauf gekommen war („[die Arbeit Deines Sohnes] loben hiesse mich selbst loben“).[14] Er habe darüber nichts veröffentlicht, da er „das Geschrei der Böotier scheue“.[15] Lobatschewskis Arbeiten fand Gauß so interessant, dass er noch in fortgeschrittenem Alter Russisch lernte, um sie zu studieren.

Primzahlverteilung und Methode der kleinsten Quadrate[Bearbeiten]

Mit achtzehn Jahren entdeckte er einige Eigenschaften der Primzahlverteilung und fand die Methode der kleinsten Quadrate, bei der es darum geht, die Summe der Quadrate von Abweichungen zu minimieren. Nach ihr lässt sich etwa das wahrscheinlichste Ergebnis für eine neue Messung aus einer genügend großen Zahl vorheriger Messungen ermitteln. Auf dieser Basis untersuchte er später Theorien zur Berechnung von Flächeninhalten unter Kurven (numerische Integration), die ihn zur gaußschen Glockenkurve gelangen ließen. Die zugehörige Funktion ist bekannt als die Dichte der Standardnormalverteilung und wird bei vielen Aufgaben zur Wahrscheinlichkeitsrechnung angewandt, wo sie die (asymptotische, das heißt für genügend große Datenmengen gültige) Verteilungsfunktion von zufällig um einen Mittelwert streuenden Daten ist. Gauß selbst machte davon unter anderem in seiner erfolgreichen Verwaltung der Witwen- und Waisenkasse der Göttinger Universität Gebrauch.

Gauß förderte auf diesem Gebiet eine der ersten Mathematikerinnen der Neuzeit, Sophie Germain.

Einführung der elliptischen Funktionen[Bearbeiten]

Als 19-Jähriger führte er 1796, bei Betrachtungen über die Bogenlänge auf einer Lemniskate in Abhängigkeit von der Entfernung des Kurvenpunktes zum Ursprung, mit den lemniskatischen Sinusfunktionen die historisch ersten, heute so genannten elliptischen Funktionen ein. Seine Notizen darüber hat er jedoch nie veröffentlicht. Diese Arbeiten stehen in Zusammenhang mit seiner Untersuchung des arithmetisch-geometrischen Mittels. Die eigentliche Entwicklung der Theorie der elliptischen Funktionen, den Umkehrfunktionen der schon länger bekannten elliptische Integrale, erfolgte durch Niels Henrik Abel (1827) und Carl Gustav Jacobi.

Fundamentalsatz der Algebra, Beiträge zur Verwendung komplexer Zahlen[Bearbeiten]

Gauß erfasste früh den Nutzen komplexer Zahlen, so auch in seiner Doktorarbeit von 1799, die einen strengeren Beweis des Fundamentalsatzes der Algebra enthält. Dieser Satz besagt, dass jede algebraische Gleichung mit Grad größer als null mindestens eine reelle oder komplexe Lösung besitzt. Den älteren Beweis von Jean-Baptiste le Rond d’Alembert kritisierte Gauß als ungenügend, aber auch sein eigener Beweis erfüllt noch nicht die späteren Ansprüche an topologische Strenge. Gauß kam auf den Beweis des Fundamentalsatzes noch mehrfach zurück und gab neue Beweise 1815 und 1816.

Gauß kannte auch spätestens 1811[16] die geometrische Darstellung komplexer Zahlen in einer Ebene (komplexe Zahlenebene, gaußsche Zahlenebene), die aber auch unabhängig schon Jean-Robert Argand 1806 und Caspar Wessel 1797 fanden.

Beiträge zur Zahlentheorie[Bearbeiten]

17-Eck-Stern am Braunschweiger Gaußdenkmal

Am 29. März 1796, wenige Wochen vor seinem neunzehnten Geburtstag, bewies er die Konstruierbarkeit des regelmäßigen Siebzehnecks und lieferte damit die erste nennenswerte Ergänzung euklidischer Konstruktionen seit 2000 Jahren. Dies war aber nur ein Nebenergebnis bei der Arbeit für sein zahlentheoretisch viel weiterreichendes Werk Disquisitiones Arithmeticae.

Eine erste Ankündigung dieses Werkes fand sich am 1. Juni 1796 im Intelligenzblatt der allgemeinen Literatur-Zeitung in Jena. Die 1801 erschienenen Disquisitiones wurden grundlegend für die weitere Entwicklung der Zahlentheorie, zu der einer seiner Hauptbeiträge der Beweis des quadratischen Reziprozitätsgesetzes war, das die Lösbarkeit von quadratischen Gleichungen „mod p“ beschreibt und für das er im Laufe seines Lebens fast ein Dutzend verschiedene Beweise fand. Neben dem Aufbau der elementaren Zahlentheorie auf modularer Arithmetik findet sich auch eine Diskussion von Kettenbrüchen und der Kreisteilung, mit einer berühmten Andeutung über ähnliche Sätze bei der Lemniskate und anderen elliptischen Funktionen, die später Abel und andere anregten. Einen Großteil des Werks nimmt die Theorie der quadratischen Formen ein, deren Geschlechtertheorie er entwickelt.

Es finden sich aber noch viele weitere tiefliegende Resultate, oft nur kurz angedeutet, in diesem Buch, die die Arbeit späterer Generationen von Zahlentheoretikern in vielfältiger Weise befruchteten. Der Zahlentheoretiker Peter Gustav Lejeune Dirichlet berichtete, er habe die Disquisitiones sein Leben lang bei der Arbeit stets griffbereit gehabt. Das Gleiche gilt für die beiden Arbeiten über biquadratische Reziprozitätsgesetze von 1825 und 1831, in denen er auch die gaußschen Zahlen einführt (ganzzahliges Gitter in komplexer Zahlenebene). Beweise für diese Gesetze gab erst Gotthold Eisenstein. Die Arbeiten sind wahrscheinlich Teil einer geplanten Fortsetzung der Disquisitiones, die aber nie erschien.

André Weil regte die Lektüre dieser Arbeiten (und einiger Stellen im Tagebuch, wo es in versteckter Form um Lösung von Gleichungen über endlichen Körpern geht) nach seinen eigenen Angaben zu seinen Arbeiten über die Weil-Vermutungen an. Gauß kannte auch den Primzahlsatz, veröffentlichte ihn aber nicht.[17]

Beiträge zur Astronomie[Bearbeiten]

Nach der Fertigstellung der Disquisitiones wandte sich Gauß der Astronomie zu. Anlass hierfür war die Entdeckung des Zwergplaneten Ceres durch Giuseppe Piazzi am 1. Januar 1801, dessen Position am Himmel der Astronom kurz nach seiner Entdeckung wieder verloren hatte. Der 24-jährige Gauß schaffte es, die Bahn mit Hilfe einer neuen indirekten Methode der Bahnbestimmung und seiner Ausgleichsrechnungen auf Basis der Methode der kleinsten Quadrate so zu berechnen, dass Franz Xaver von Zach ihn am 7. Dezember 1801 und – bestätigt – am 31. Dezember 1801 wiederfinden konnte. Heinrich Wilhelm Olbers bestätigte dies unabhängig von Zach durch Beobachtung am 1. und 2. Januar 1802. Gauß beschäftigte sich danach auch noch mit der Bahn des Asteroiden Pallas, auf dessen Berechnung die Pariser Akademie ein Preisgeld ausgesetzt hatte, konnte die Lösung jedoch nicht finden. Seine Erfahrungen mit der Bahnbestimmung von Himmelskörpern mündeten in seinem Werk Theoria motus corporum coelestium in sectionibus conicis solem ambientium (Theorie der Bewegung der Himmelskörper, die in Kegelschnitten die Sonne umlaufen), das 1809 erschien.

Das Problem der Wiederauffindung der Ceres als solches lag darin, dass durch die Beobachtungen weder der Ort, ein Stück der Bahn, noch die Entfernung bekannt sind, sondern nur die Richtungen der Beobachtung. Dies führt auf die Suche einer Ellipse und nicht nach einem Kreis, wie ihn Gauß’ Konkurrenten ansetzten.[18] Einer der Brennpunkte der Ellipse ist bekannt (die Sonne selbst), und die Bögen der Bahn der Ceres zwischen den Richtungen der Beobachtung werden nach dem zweiten Keplerschen Gesetz durchlaufen, das heißt, die Zeiten verhalten sich wie die vom Leitstrahl überstrichenen Flächen. Und außerdem ist für die rechnerische Lösung bekannt, dass die Beobachtungen selbst von einem Kegelschnitt im Raum ausgehen, der Erdbahn selbst.

Im Grundsatz führt das Problem auf eine Gleichung achten Grades, deren triviale Lösung die Erdbahn selbst ist. Durch umfangreiche Nebenbedingungen und die von Gauß entwickelte Methode der kleinsten Quadrate gelang es dem 24-Jährigen, für die Bahn der Ceres für den 25. November bis 31. Dezember 1801 den von ihm berechneten Ort anzugeben. Damit konnte Zach am letzten Tag der Vorhersage Ceres wiederfinden. Der Ort lag nicht weniger als 7° (d. h. 13,5 Vollmondbreiten) östlich der Stelle, wo die anderen Astronomen Ceres vermutet hatten, was nicht nur Zach, sondern auch Olbers, der Ceres unabhängig von Zach am 1. Januar 1802 ebenfalls wiederentdeckt hatte, gebührend würdigten.[19]

Diese Arbeiten, die Gauß noch vor seiner Ernennung zum Sternwarten-Direktor in Göttingen unternahm, machten ihn mehr noch als seine Zahlentheorie in Europa mit einem Schlag bekannt und verschafften ihm unter anderem eine Einladung an die Akademie nach Sankt Petersburg.

Die in diesem Zusammenhang von Gauß gefundene iterative Methode wird noch heute angewandt, weil sie es einerseits ermöglicht, alle bekannten Kräfte ohne erheblichen Mehraufwand in das physikalisch-mathematische Modell einzubauen, und andererseits auch computertechnisch einfach handhabbar ist.

Beiträge zur Potentialtheorie[Bearbeiten]

In der Potentialtheorie und Physik ist der gaußsche Integralsatz (1835, veröffentlicht erst 1867) grundlegend. Er setzt in einem Vektorfeld das Volumenintegral der Divergenz (Ableitungsvektor angewandt auf das Vektorfeld) mit dem Oberflächenintegral des Vektorfeldes um dieses Volumen herum in Beziehung.

Gaußsche Osterformel[Bearbeiten]

Um das Osterdatum für jedes beliebige Jahr rechnerisch ermitteln zu können, entwickelte er eine geschlossene Formel. Erstmals veröffentlicht wurde diese Berechnung in der von Franz Xaver von Zach herausgegebenen Zeitschrift Monatliche Correspondenz zur Beförderung der Erd- und Himmels-Kunde, Band 2, August 1800.[20] In dem Artikel Noch etwas über die Bestimmung des Osterfestes, veröffentlicht am 12. September 1807 im Braunschweigischen Magazin,[21] ging Gauß noch von einem Epaktensprung alle 300 Jahre aus. In der Zeitschrift für Astronomie und verwandte Wissenschaften, Band 1, wurde 1816 der Artikel Berichtigung zu dem Aufsatze: Berechnung des Osterfestes veröffentlicht, in dem Gauß eine Ergänzung seiner gaußschen Osterformel vornimmt, die den Epaktensprung alle 312,5 Jahre vorsieht.[22]

Landvermessung und Erfindung des Heliotrops[Bearbeiten]

Der Gauß’sche Punkt in Bremen
Rückseite des 10-DM-Scheins mit Skizze der Triangulation Norddeutschlands durch Gauß (rechts)

Auf dem Gebiet der Geodäsie sammelte Gauß zwischen 1797 und 1801 die ersten Erfahrungen, als er dem französischen Generalquartiermeister Lecoq bei dessen Landesvermessung des Herzogtums Westfalen als Berater zur Seite stand. Zum zweiten Mal kam er 1816 damit in Berührung, als ihn der König von Dänemark mit der Durchführung einer Breiten- und Längengradmessung in dänischem Gebiet beauftragte. Nach abschließenden Verhandlungen leitete Gauß dann zwischen 1818 und 1826 die Landesvermessung des Königreichs Hannover („gaußsche Landesaufnahme“). Durch die von ihm erfundene Methode der kleinsten Quadrate und die systematische Lösung umfangreicher linearer Gleichungssysteme (gaußsches Eliminationsverfahren) gelang ihm eine erhebliche Steigerung der Genauigkeit. Auch für die praktische Durchführung interessierte er sich: Er erfand als Messinstrument das über Sonnenspiegel beleuchtete Heliotrop.

Gaußsche Krümmung und Geodäsie[Bearbeiten]

In diesen Jahren beschäftigte er sich – angeregt durch die Geodäsie und die Karten-Theorie – auch mit der Theorie der Differentialgeometrie der Flächen und führte unter anderem die gaußsche Krümmung ein und bewies sein Theorema egregium, das die Winkelsumme in Dreiecken mit der Krümmung in Beziehung setzt. Es zeigt, dass die Krümmung durch lokale Größen gegeben ist und nicht von der Einbettung der Fläche in den dreidimensionalen Raum abhängt, also auch bei Abbildungen von Flächen aufeinander wie in der Kartenprojektion erhalten bleibt.

Gedenktafel auf dem Brocken

Wolfgang Sartorius von Waltershausen berichtet,[23] Gauß habe bei Gelegenheit der Hannoverschen Landesvermessung empirisch nach einer Abweichung der Winkelsumme besonders großer Dreiecke vom euklidischen Wert von 180° gesucht. Wie etwa bei dem Dreieck, das vom Brocken im Harz, dem Inselsberg im Thüringer Wald und dem Hohen Hagen bei Dransfeld gebildet wird. Seitenlängen: Brocken – 68 km – Hoher Hagen – 84 km – Inselsberg – 106 km – Brocken. Die Vermessung durch Gauß ist belegt, die oben erwähnte Vermutung zur Motivation ist dagegen unsicher.[24] Max Jammer schrieb über das Ergebnis dieser gaußschen Messung: „Es braucht kaum eigens gesagt zu werden, daß er innerhalb der Fehlergrenze keine Abweichung von 180° entdeckte und daraus den Schluß zog, die Struktur des wirklichen Raumes sei, soweit die Erfahrung darüber eine Aussage erlaubt, Euklidisch.[25]

Magnetismus, Elektrizität und Telegrafie[Bearbeiten]

Zusammen mit Wilhelm Eduard Weber arbeitete er ab 1831 auf dem Gebiet des Magnetismus. Gauß erfand mit Weber das Magnetometer und verband so 1833 seine Sternwarte mit dem physikalischen Institut. Dabei tauschte er über elektromagnetisch beeinflusste Kompassnadeln Nachrichten mit Weber aus; die erste (elektromagnetische) Telegrafenverbindung auf der Welt. Mit ihm zusammen entwickelte er auch das cgs-Einheitensystem, das später, 1881, auf einem internationalen Kongress in Paris zur Grundlage der elektrotechnischen Maßeinheiten bestimmt wurde. Er organisierte ein weltweites Netz von Beobachtungsstationen (Magnetischer Verein), um das erdmagnetische Feld zu vermessen.

Gauß fand bei seinen Experimenten zur Elektrizitätslehre 1833 auch unabhängig von Gustav Robert Kirchhoff (1845) die Kirchhoffschen Regeln für Stromkreise.[26]

Arbeitsweise von Gauß[Bearbeiten]

Gauß arbeitete auf vielen Gebieten, veröffentlichte seine Ergebnisse jedoch erst, wenn eine Theorie seiner Meinung nach komplett war. Dies führte dazu, dass er Kollegen gelegentlich darauf hinwies, dieses oder jenes Resultat schon lange bewiesen zu haben, es wegen der Unvollständigkeit der zugrundeliegenden Theorie oder der ihm fehlenden, zum schnellen Arbeiten nötigen Unbekümmertheit nur noch nicht präsentiert zu haben.

Bezeichnenderweise besaß Gauß ein Petschaft, das einen von wenigen Früchten behangenen Baum und das Motto „Pauca sed matura“ (deutsch: „Weniges, aber Reifes“) zeigte. Einer Anekdote zufolge lehnte er es Bekannten, die Gauß’ umfangreiche Arbeiten kannten oder ahnten, gegenüber ab, diesen Wahlspruch zu ersetzen, z. B. durch „Multa nec immatura“ (deutsch: „Viel, aber nicht Unreifes“), da nach seinem eigenen Bekunden er lieber eine Entdeckung einem anderen überließ, als sie nicht vollständig ausgearbeitet unter seinem Namen zu veröffentlichen. Das ersparte ihm Zeit in den Bereichen, die Gauß eher als Randthemen betrachtete, so dass er diese Zeit auf seine originäre Arbeit verwenden konnte.

Tatsache ist, dass er ein intensiver Tagebuchschreiber war und dort auch viele seiner Resultate notierte. Nach seinem Tod wurden über zwanzig dieser Bände gefunden. So konnte für einen Großteil seiner behaupteten Leistungen belegt werden, dass er sie tatsächlich erbracht hat. Da nicht alle seiner Tagebücher erhalten sind, gilt auch ein Teil seiner Leistungen als verloren.

Gauß als Namensgeber[Bearbeiten]

Porträtbildnis an einem Vermessungsstein am Wilseder Berg

Von Gauß entwickelte Methoden oder Ideen, die seinen Namen tragen, sind:

Carl Friedrich Gauß, die gaußsche Normalverteilung und die Sternwarte Göttingen auf dem 10-DM-Schein - sein Abbild ist seitenverkehrt

Methoden und Ideen, die teilweise auf seinen Arbeiten beruhen, sind:

Vermessungsschiff Gauss

Zu seinen Ehren benannt sind:

Schriften[Bearbeiten]

Briefwechsel und Tagebuch[Bearbeiten]

Gesamtausgabe[Bearbeiten]

  • Carl Friedrich Gauß: Werke, herausgegeben von der (Königlichen) Gesellschaft der Wissenschaften zu Göttingen
    • Band 1 bis 6, Dieterich, Göttingen 1863–1874 (bei Google Books: Band 2, 3, 3, 3, 5; im Internet-Archiv: Band 4, 4, 6), zweiter Abdruck 1870–1880 (im Internet-Archiv: Band 1, 2, 2, 3, 3, 4, 5, 5)
    • Band 7 bis 12, B. G. Teubner, Leipzig 1900–1917, Julius Springer, Berlin 1922–1933 (im Internet-Archiv: Band 7, 9, 10.2(1+5), 10.2(4))

In den Bänden 10 und 11 finden sich ausführliche Kommentare von Paul Bachmann (Zahlentheorie), Ludwig Schlesinger (Funktionentheorie), Alexander Ostrowski (Algebra), Paul Stäckel (Geometrie), Oskar Bolza (Variationsrechnung), Philipp Maennchen (Gauß als Rechner), Harald Geppert (Mechanik, Potentialtheorie), Andreas Galle (Geodäsie), Clemens Schaefer (Physik) und Martin Brendel (Astronomie). Herausgeber war zuerst Ernst Schering, dann Felix Klein.

Übersetzungen[Bearbeiten]

  • Recherches générales sur les surfaces courbes, Bachelier, Paris 1852 (französische Übersetzung von Disquisitiones generales circa superficies curvas, 1828; bei Gallica)
  • Méthode des moindres carrés, Mallet-Bachelier, Paris 1855 (französische Übersetzung von Theoria combinationis observationum erroribus minimis obnoxiae, 1823/1828, und weiteren von Joseph Bertrand; bei Google Books, dito)
  • Theory of the Motion of the Heavenly Bodies Moving about the Sun in Conic Sections, Little, Brown and Company, Boston 1857 (englische Übersetzung von Theoria motus corporum coelestium in sectionibus conicis solem ambientium, 1809, von Charles Henry Davis; bei Google Books, dito; im Internet-Archiv, dito, dito)
  • Carl Haase (Hrsg.): Theorie der Bewegung der Himmelskörper welche in Kegelschnitten die Sonne umlaufen, Carl Meyer, Hannover 1865 (deutsche Übersetzung von Theoria motus corporum coelestium in sectionibus conicis solem ambientium, 1809, von Carl Haase; bei Google Books); Faksimile-Reprint Verlag Kessel, 2009, ISBN 978-3-941300-13-2
  • Anton Börsch, Paul Simon (Hrsg.): Abhandlungen zur Methode der kleinsten Quadrate von Carl Friedrich Gauss, P. Stankiewicz, Berlin 1887 (deutsche Übersetzung von Theoria combinationis observationum erroribus minimis obnoxiae, 1823/1828, und weiteren; im Internet-Archiv)
  • Heinrich Simon (Hrsg.): Allgemeine Untersuchungen über die unendliche Reihe \scriptstyle 1 + \frac{\alpha\beta}{1.\gamma} x + \frac{\alpha(\alpha+1) \beta(\beta+1)}{1\ .\ 2\ .\ \gamma(\gamma+1)} xx + \frac{\alpha(\alpha+1)(\alpha+2) \beta(\beta+1)(\beta+2)}{1\ .\ 2\ .\ 3\ .\ \gamma(\gamma+1)(\gamma+2)} x^3 + u.s.w., Julius Springer, Berlin 1888 (deutsche Übersetzung von Disquisitiones generales circa seriem infinitam 1+…, 1813, von Heinrich Simon; im Internet-Archiv)
  • Hermann Maser (Hrsg.): Carl Friedrich Gauss’ Untersuchungen über höhere Arithmetik, Julius Springer, Berlin 1889 (deutsche Übersetzung von Disquisitiones Arithmeticae, 1801, und weiteren; im Internet-Archiv); Faksimile-Reprint Verlag Kessel, 2009, ISBN 978-3-941300-09-5.
  • Albert Wangerin (Hrsg.): Allgemeine Flächentheorie (Disquisitiones generales circa superficies curvas), Wilhelm Engelmann, Leipzig 1889 (deutsche Übersetzung; bei der University of Michigan; im Internet-Archiv, dito)
  • Eugen Netto (Hrsg.): Die vier Gauss’schen Beweise für die Zerlegung ganzer algebraischer Funktionen in reelle Factoren ersten oder zweiten Grades (1799–1849), Wilhelm Engelmann, Leipzig 1890 (deutsche Übersetzung der Doktorarbeit, 1799, und weiterer Arbeiten; bei der University of Michigan; im Internet-Archiv, dito, dito)
  • Eugen Netto (Hrsg.): Sechs Beweise des Fundamentaltheorems über quadratische Reste von Carl Friedrich Gauss, Wilhelm Engelmann, Leipzig 1901 (deutsche Übersetzung aus Disquisitiones Arithmeticae, 1801, und weiteren mit Anmerkungen; bei der University of Michigan; im Internet-Archiv, dito, dito, dito)
  • General investigations of curved surfaces of 1827 and 1825, The Princeton University Library, 1902 (englische Übersetzung von Disquisitiones generales circa superficies curvas, 1828, und Neue allgemeine Untersuchungen über die krummen Flächen, 1900, von James Caddall Morehead und Adam Miller Hiltebeitel; bei der University of Michigan; im Internet-Archiv, dito)
  • Heinrich Weber (Hrsg.): Allgemeine Grundlagen einer Theorie der Gestalt von Flüssigkeiten im Zustand des Gleichgewichts, Wilhelm Engelmann, Leipzig 1903 (deutsche Übersetzung von Principia generalia theoriae figurae fluidorum in statu aequilibrii, 1830, von Rudolf Heinrich Weber; im Internet-Archiv, dito)

Kartenwerke[Bearbeiten]

Denkmäler[Bearbeiten]

Denkmal in Braunschweig
Briefmarke (1955) zum 100. Todestag
Briefmarke (1977) zum 200. Geburtstag
Briefmarke (1977) zum 200. Geburtstag

Statuen und Plastiken[Bearbeiten]

schriftliche Erinnerungskultur[Bearbeiten]

  • Auf der „10 DM“-Banknote der vierten Serie der Deutschen Mark ist eine Abbildung Gauß’ zusammen mit einer Darstellung der Glockenkurve und wichtiger Gebäude Göttingens zu finden. An ihn erinnern ebenso zwei Sondermünzen, die 1977 aus Anlass seines 200. Geburtstages in der Bundesrepublik Deutschland (5 DM) und in der DDR (20 M) herausgegeben wurden.
  • In Deutschland erinnern drei Briefmarken an Gauß: 1955 gab die Deutsche Bundespost aus Anlass seines 100. Todestages eine 10-Pf-Briefmarke heraus; 1977 erinnerte die DDR mit einer 20-Pf-Briefmarke an den 200. Geburtstag, ebenso die Deutsche Bundespost mit einer 40-Pf-Briefmarke
  • Gedenktafel am Standort des Geburtshauses Wilhelmstraße 30 in Braunschweig.
  • Drei Göttinger Gedenktafeln.
  • Zwei Gedenktafeln am ehemaligen Wohnhaus von Gauß' Doktorvater Johann Friedrich Pfaff in Helmstedt.

Gaußsteine[Bearbeiten]

Zu den zahlreichen auf Anleitung von Gauß aufgestellten Vermessungssteinen gehören:

Bildnisse[Bearbeiten]

Von Gauß gibt es relativ viele Bildnisse, unter anderem:

Literatur[Bearbeiten]

Belletristik:

Filme[Bearbeiten]

Weblinks[Bearbeiten]

 Commons: Carl Friedrich Gauß – Album mit Bildern, Videos und Audiodateien
 Wikisource: Carl Friedrich Gauß – Quellen und Volltexte
 Wikisource: Johann Carl Friedrich Gauß – Quellen und Volltexte (Latein)

Einzelnachweise[Bearbeiten]

  1. Sartorius von Waltershausen Gauß zum Gedächtnis
  2. Sartorius von Waltershausen: Gauss zum Gedächtniss, 1856, S. 12
  3. Gauss’s Day of Reckoning Artikel in American Science (englisch)
  4. Gausschildren.org (abgerufen am 22. Juli 2011)
  5. Wyneken Family Tree (abgerufen am 22. Juli 2011)
  6. Brief Nr. 45 an Alexander von Humboldt vom 7. Dezember 1853
  7. Plutarch: Moralia, 718C: griechisch, griechisch-lateinisch, deutsch
  8. Sartorius von Waltershausen: Gauss zum Gedächtniss, 1856, S. 97
  9. Brief von Wilhelm Baum an Alexander von Humboldt vom 28. Mai 1855, abgedruckt in Bruhns (Hrsg.): Briefe zwischen A. v. Humboldt und Gauss, 1877, S. 75
  10. José Ferreirós: Ὁ Θεὸς Ἀριθμητίζει: The rise of pure mathematics as arithmetic with Gauss in Catherine Goldstein, Norbert Schappacher, Joachim Schwermer (Hrsg.): The shaping of arithmetic: after C. F. Gauss’s Disquisitiones Arithmeticae, Springer, Berlin 2007, S. 234–268
  11. Wolfgang Hänicke, Jens Frahm und Axel D. Wittmann: Magnetresonanz-Tomografie des Gehirns von Carl Friedrich Gauß. In: MPI News 5, Heft 12 (1999). Online-Fassung, Internet-Archiv
  12. Aus HNA.de vom 28. Oktober 2013: Unerwartete Entdeckung: Falsches Gehirn im Glas
  13. Hannoversche Allgemeine Zeitung, 29. Oktober 2013
  14. Brief an Wolfgang von Bolyai vom 6. März 1832, Auszug in Gauß: Werke. Band 8, S. 220–224, vollständig in Schmidt, Stäckel (Hrsg.): Briefwechsel zwischen Carl Friedrich Gauss und Wolfgang Bolyai, 1899, S. 108–113 (bei der University of Michigan; im Internet-Archiv)
  15. Brief an Friedrich Wilhelm Bessel vom 27. Januar 1829, Auszug in Gauß: Werke. Band 8, S. 200, vollständig in Auwers (Hrsg.): Briefwechsel zwischen Gauss und Bessel, 1880, S. 487–490 (im Internet-Archiv). „Böotier“ ist sprichwörtlich für „ländlich grobes, ungebildetes Volk“, siehe Böotien
  16. Brief an Bessel vom 18. Dezember 1811, Gauß, Werke, Band 8, S.90
  17. Er findet sich in einem Brief an Johann Franz Encke vom 24. Dezember 1849, abgedruckt in Gauß: Werke. Band 2, S. 444–447 (Online in der Google-Buchsuche).
  18. Vgl. S. 436 von Moritz CantorGauß: Karl Friedrich G.. In: Allgemeine Deutsche Biographie (ADB). Band 8, Duncker & Humblot, Leipzig 1878, S. 430–445.
  19. Paul Karlson: Zauber der Zahlen. Ullstein-Verlag, Berlin West, Neunte, überarbeitete und erweiterte Auflage, 1967, S.390 f. m.w.N.
  20. Nachgedruckt in Gauß: Werke. Band 6, S. 73–79
  21. Nachgedruckt in Gauß: Werke. Band 6, S. 82–86
  22. Nachgedruckt in Gauß: Werke. Band 11.1, S. 201
  23. Sartorius von Waltershausen: Gauss zum Gedächtniss, 1856
  24. Erhard Scholz hält es für durchaus möglich, dass Gauß daran dachte (siehe arXiv:math.HO/0409578). Gauß selbst äußert sich in einem Brief an Olbers vom 1. März 1827, zitiert bei Bühler S. 97, dahingehend, dass die Messfehler für ein solches Feststellen von Abweichungen zu groß seien.
  25. Max Jammer: Das Problem des Raumes, Darmstadt 1960, S. 164
  26. Dunnington: Gauss – Titan of Science, American Mathematical Society, S. 161
  27. Archiv der Gauß-Vorlesungen bei der Deutschen Mathematiker-Vereinigung
  28. Gauß-Büste in der Walhalla aufgestellt. (PDF; 297 kB) Pressemitteilung der Stadt Göttingen vom 12. September 2007
  29. Hermann Müller-Bohn: Die Denkmäler Berlins in Wort und Bild, Verlag von I.M. Spaeth, Berlin
  30. A. Wietzke: Das wieder aufgefundene Jugendbild von Carl Friedrich Gauß, Jahresbericht der DMV 41 (Angelegenheiten), 1932, S. 1–2
  31. Neben Gauß, dessen Erkenntnisse über das Erdmagnetfeld vorgestellt werden, weitere vier Wissenschaftler, die Entdeckungen zur Geowissenschaft gemacht haben: Pierre Simon de Laplace, der die Erdentstehung entschlüsselte, Léon-Philippe Teisserenc de Bort und Auguste Piccard, Erforscher der Stratosphäre und Emil Wiechert, Erfinder des Seismographen
Dieser Artikel existiert auch als Audiodatei.
Gesprochene Wikipedia Dieser Artikel ist als Audiodatei verfügbar:
Speichern | Informationen | 16:13 min (9,8 MB) Carl Friedrich Gauß Text der gesprochenen Version
Mehr Informationen zur gesprochenen Wikipedia
Dies ist ein als lesenswert ausgezeichneter Artikel.
Dieser Artikel wurde am 21. Juli 2005 in dieser Version in die Liste der lesenswerten Artikel aufgenommen.