Computerphysik

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Computerphysik, auch Computational Physics (CP) oder Computergestützte Physik, ist ein Teilgebiet der Physik, das sich mit der Computersimulation physikalischer Prozesse befasst.

Als Grundlage dienen die Verfahren der numerischen Mathematik. Die Computerphysik befasst sich mit Methoden, welche die Ausgangsgleichungen, die ein physikalisches System beschreiben, numerisch oder algebraisch mit dem Computer lösen oder auch mit der Simulation von Regelsystemen, was die Aufstellung von Gleichungen erübrigt. Aufgrund vergleichbarer Verfahren existiert eine enge Beziehung zur Computerchemie, wodurch sie sich sehr stark gegenseitig beeinflussen.

Arbeitsweise[Bearbeiten]

Die computergestützte Physik untersucht physikalische Probleme, die sich in der Regel zwar mit Gleichungen beschreiben lassen, deren Lösung sich aber nicht direkt in einer geschlossenen Formel berechnen lassen. Solche geschlossenen Lösungen existieren nur für sehr wenige idealisierte Systeme (z. B. Keplerproblem, Wasserstoffatom oder zweidimensionale Ising-Modell).

Grundlage jeder Simulation ist ein Modell, das die Wirklichkeit im Rahmen gewisser Näherungen beschreibt. Der Computer dient zur Realisierung des modellierten Systems und zur Messung physikalischer Größen sowie zur Bestimmung der Auswirkungen der Modellparameter. Computergestützte Physik umfasst ggf. auch die Anpassung der Soft- und Hardware an das zu lösende Problem.

Das Spektrum der benötigten Rechenressourcen reicht von einigen Millisekunden auf einfachen PCs bis zu monatelangen Rechnungen auf Großrechnern und Supercomputern.

Beispiele[Bearbeiten]

Anwendungsgebiete[Bearbeiten]

Computergestützte Physik wird inzwischen zur Forschung in nahezu allen Teilgebieten der Physik eingesetzt:

Problementypen[Bearbeiten]

Viele Computersimulationen physikalischer Systeme lassen sich auf die Lösung der folgenden mathematischen Probleme zurückführen:

Methoden[Bearbeiten]

Zu den gängigsten Methoden der computergestützten Physik zählen:

Siehe auch[Bearbeiten]

Literatur[Bearbeiten]

  • Alexander K. Hartmann, Heiko Rieger, Optimization Algorithms in Physics, Wiley-VCH, 2002, ISBN 3527403078
  • Alexander K. Hartmann, A Practical Guide To Computer Simulation, World Scientific Publishing Company, 2009, ISBN 9812834141
  • Istvan Montvay, Gernot Münster, Quantum Fields on a Lattice, Cambridge Monographs on Mathematical Physics, ISBN 0521599172
  • Tao Pang, An Introduction to Computational Physics, Cambridge University Press, 2006, ISBN 0521825695
  • Philipp O.J. Scherer, Computational Physics: Simulation of Classical and Quantum Systems and Numerical Methods,Springer, Berlin, 2010, ISBN 3642139892

Weblinks[Bearbeiten]