Copula (Mathematik)

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Eine Copula (Pl. Copulas oder Copulae) ist eine Funktion, die einen funktionalen Zusammenhang zwischen den Randverteilungsfunktionen verschiedener Zufallsvariablen und ihrer gemeinsamen Wahrscheinlichkeitsverteilung angeben kann.

Mit ihrer Hilfe kann man stochastische Abhängigkeit deutlich flexibler modellieren als beispielsweise mit Korrelationskoeffizienten.

Definition[Bearbeiten]

Eine Copula ist eine multivariate Verteilungsfunktion C\colon[0,1]^n\rightarrow [0,1], deren eindimensionale Randverteilungen gleichverteilt über dem Intervall [0,1] sind. Formal ausgedrückt bedeutet dies folgendes:

  • C ist multivariate Verteilungsfunktion, das heißt
    • \forall u \in [0,1]^n\colon\min\{u_1,\dotsc,u_n\}=0\implies C(u)=0,
    • C ist n-steigend, das heißt für jedes Hyperrechteck R=\prod_{i=1}^{n}[x_i,y_i]\subseteq [0,1]^n ist das C-Volumen nicht negativ:  V_{C}\left( R\right):=\sum_{\mathbf z\in \prod_{i=1}^{n}\{x_i,y_i\}} (-1)^{N(\mathbf z)} C(\mathbf z)\ge 0, wobei N(\mathbf z):=|\{k\mid z_k=x_k\}|,
  • Die eindimensionalen Randverteilungen von C sind uniform auf dem Einheitsintervall: \forall j\in\{1,\dotsc,n\},u=(u_1,...,u_n)\in \{1\}^{j-1}\times[0,1]\times\{1\}^{n-j}\colon C(u)=u_j.

Die Forderung an die Randverteilungen lässt sich wie folgt motivieren: Für n \in \N beliebig verteilte Zufallsvariablen X_1,X_2,\ldots,X_n mit stetigen Verteilungen F_{X_i},\;i\in\{1,2,\dotsc,n\} ist die Zufallsvariable F_{X_i}(X_i) gleichverteilt über dem Intervall [0,1]. Zusammen mit dem folgenden Satz von Sklar wird die Trennung von Randverteilungen und Abhängigkeiten unter diesen möglich.

Satz von Sklar[Bearbeiten]

Im Folgenden sei \overline{\R}:=\R \cup \{-\infty, +\infty \} eine Erweiterung der reellen Zahlen.

Sei F:{\overline{\R}}^n \rightarrow [0,1] eine n-dimensionale Verteilungsfunktion mit eindimensionalen Randverteilungen F_1, \ldots, F_n : \overline{\R} \rightarrow [0,1]. Dann existiert eine n-dimensionale Copula C, sodass für alle (x_1, \ldots, x_n) \in {\overline{\R}}^n\ gilt:

 F(x_1,x_2,\ldots,x_n) = C\left( F_1\left(x_1\right), \ldots, F_n\left(x_n \right) \right).

Sind alle F_i stetig, so ist die Copula eindeutig.

Fréchet-Hoeffding-Schranken[Bearbeiten]

Für jede n-variate Copula C gilt die untere Fréchet-Hoeffding Schranke

  •  C(u_1,\ldots,u_n) ~\ge~ \max\left\{\sum\limits_{i=1}^n {u_i} +1-n, ~0 \right\} ~=:~ W(u_1,\ldots,u_n)

und die obere Fréchet-Hoeffding Schranke

  • C(u_1,\ldots,u_n) ~\le~ \min\{u_1,\ldots,u_n\} ~=:~ M(u_1,\ldots,u_n)

Die obere Schranke M ist selbst eine Copula, die untere Schranke W hingegen nur für n = 2.

Anwendung[Bearbeiten]

Copulae werden eingesetzt, um Rückschlüsse auf die Art der stochastischen Abhängigkeit verschiedener Zufallsvariablen zu erzielen oder um Abhängigkeiten gezielt zu modellieren. Sie werden beispielsweise in der Kreditrisikoanalyse eingesetzt, um Aussagen über einen gehäuften Bankrott mehrerer Schuldner innerhalb eines Anleihenportfolios machen zu können. Analog sind Anwendungen im Versicherungsbereich üblich. Dort stellen gehäuft auftretende Schäden verschiedener Schadenarten ein finanzielles Problem dar. Beispiel hierfür ist ein zu beobachtender Zusammenhang zwischen Sturm- und Hochwasserschäden.

Beispiele für Copulae[Bearbeiten]

  • Die einfachste Form der Copula ist die Unabhängigkeitscopula (Produktcopula)
C(u_1,\ldots,u_n)= \prod\limits_{i=1}^{n}u_i = u_1 \cdot \ldots \cdot u_n.
Sie steht für stochastisch unabhängige Zufallsvariablen U_1, \ldots, U_n, die gemäß der Copula C verteilt sind. In Zeichen: (U_1,\ldots,U_n) \sim C
  • Die obere Fréchet-Hoeffding-Schranke, ebenfalls eine Copula, ist gegeben durch
C(u_1, \ldots ,u_n)=\min_{i=1, \ldots, n}u_i.
Sie beschreibt perfekte positive stochastische Abhängigkeit (totale positive Korrelation).
  • Die untere Fréchet-Hoeffding-Schranke ist nur im bivariaten Fall eine Copula:
C(u_1,u_2)=\max\{u_1+u_2-1,0\}.
Sie beschreibt eine perfekte negative stochastische Abhängigkeit zweier Zufallsvariablen.
  • Die Normal- oder auch Gauß-Copula wird mit Hilfe der Verteilungsfunktion der Normalverteilung F(\cdot) definiert. So ist
C(u_1,u_2) = F_2(F^{-1}(u_1), F^{-1}(u_2),\rho)\,
eine Copula, wobei F_2(\cdot, \cdot,\rho) die bivariate Verteilungsfunktion zweier standard-normalverteilter Zufallsvariablen mit dem Korrelationskoeffizienten \rho ist.
Erzeugt man Punkte, die gemäß der Normal-Copula mit Parameter \rho = 0.5 verteilt sind, ergibt sich bereits eine leichte Konzentration dieser entlang der Winkelhalbierenden.
Simulation der bivariaten Normal-Copula, rho = 0.5, 1500 Punkte
 C_{\lambda}(u_1,u_2) = \exp\left(-\left( \left(-\ln u_1\right)^\lambda + \left(- \ln u_2\right)^\lambda \right)^{1/\lambda} \right) ,
wobei \lambda \ge 1 als Parameter fest zu wählen ist.
Erzeugt man Punkte, die gemäß der Gumbel-Copula mit Parameter \lambda > 1 verteilt sind, ergibt sich insbesondere eine Punkthäufung in der Nähe des Punktes (1,1).
Simulation der bivariaten Gumbel-Copula, lambda = 2, 1500 Punkte

Archimedische Copulae[Bearbeiten]

Archimedische Copulae stellen eine Klasse von Copulae dar. Diese lassen sich wie folgt beschreiben:

Sei \varphi\colon [0,1] \rightarrow [0,\infty] eine stetige, streng monoton fallende Funktion mit \varphi(1)=0. Bezeichne \varphi^{[-1]} \colon [0,\infty] \rightarrow [0,1]\ die Pseudo-Inverse von \varphi, d. h.

 
\varphi^{[-1]}(t) := \begin{cases}
\varphi^{-1}(t), 	& \textrm{falls }\ 	0 \leq t \leq \varphi(0) \\
0,		&	\textrm{sonst}
\end{cases}

Mit Hilfe von \varphi und \varphi^{[-1]} lässt sich nun eine bivariate Funktion definieren:


C\colon [0,1]^2 \rightarrow [0,1], \quad C(u,v) := \varphi^{[-1]}\left(\varphi\left(u\right) + \varphi\left(v\right)\right)

Die Funktion C ist genau dann eine Copula, wenn \varphi konvex ist. In diesem Fall heißt \varphi Erzeuger oder Generator der Copula. Offensichtlich ist C symmetrisch, d. h. C(u,v) = C(v,u) für alle u,v \in [0,1].

Beispiele für archimedische Copulae sind:

  • Gumbel-Copula: Ihr Erzeuger ist die Funktion \varphi(t) = (-\ln t)^{\lambda} mit Parameter \lambda \geq 1.
Damit ergibt sich \varphi^{[-1]}(t) = \exp\left(-t^{\frac{1}{\lambda}}\right) und damit die Gumbel-Copula C_{\lambda}(u,v) wie oben.
  • Clayton-Copula: Ihr Erzeuger ist die Funktion \varphi(t) = \frac{1}{\Theta} \left( t^{-\Theta} - 1 \right) mit Parameter \Theta > 0.
Damit ist \varphi^{[-1]}(t) = \left( \Theta \cdot t + 1 \right)^{-\frac{1}{\Theta}} und die bivariate Clayton-Copula ergibt sich zu:
C(u,v) =  \left( u^{-\Theta} + v^{-\Theta} - 1 \right)^{-\frac{1}{\Theta}}
  • Frank-Copula: Ihr Erzeuger ist die Funktion \varphi(t) = -\ln \left( \frac{e^{-\Theta \cdot t}-1}{e^{-\Theta}-1} \right) mit Parameter \Theta > 0.

Archimedische Copulae werden oft angewandt, da es sehr einfach ist, Zufallszahlen daraus zu generieren.

Extremwertcopula[Bearbeiten]

Definition[Bearbeiten]

Eine Copula C heißt Extremwertcopula, wenn es die Copula einer multivariaten Extremwertverteilung ist, d. h. es existiert eine multivariate Extremwertverteilung G mit univariaten Rändern G_1, \dots , G_n, dass gilt C(u_1, \dots, u_n) = G(G^{-1}_1(u_1), \dots, G^{-1}_n(u_n)).

Lemma[Bearbeiten]

Eine Copula C ist genau dann eine Extremwertcopula, wenn für \mathbf{0} \leq \mathbf{u} = (u_1, \dots, u_n)^T \leq \mathbf{1} und t > 0 gilt C(u_1^t, \dots, u_n^t) = C^t(u_1, \dots, u_n).

Ist C eine Extremwertcopula und sind G_1, \dots, G_n univariate Extremwertverteilungen, dann ist G((x_1, \dots, x_n)^T) := C(G_1(x_1), \dots, G_n(x_n)) eine multivariate Extremwertverteilung.

Literatur[Bearbeiten]

  • Joe, Harry: Dependence Modeling with Copulas (Monographs on Statistics and Applied Probability 134). CRC Press, 2015, ISBN 978-1-4665-8322-1
  • Mai, J.-F., Scherer, M.: Simulating Copulas (Stochastic Models, Sampling Algorithms and Applications). World Scientific, 2012, ISBN 978-1-84816-874-9
  • Nelsen, Roger B.: An Introduction to Copulas (Lecture Notes in Statistics). Springer Verlag, 2006, ISBN 0-387-28659-4
  • Sklar, A.: Random variables, distribution functions, and copulas – a personal look backward and forward in Rüschendorf, L., Schweizer, B. und Taylor, M. (eds) Distributions With Fixed Marginals & Related Topics (Lecture Notes - Monograph Series Number 28), 1997, ISBN 0-940600-40-4
  • Fischer, Rico: Modellierung von Abhängigkeiten mit Hilfe von Copulas: Anwendung bei der Bestimmung des Value at Risk, Logos Berlin, 2009, ISBN 3-8325-2142-9

Weblinks[Bearbeiten]

  • http://www.math.ethz.ch/~baltes/ftp/copchapter.pdf - Modelling Dependence with Copulas and Applications to Risk Management, Embrechts, P., Lindskog, F., McNeil, A. (2003), Handbook of Heavy Tailed Distributions in Finance, ed. S. Rachev, Elsevier, Chapter 8, pp. 329-384. (PDF; 818 KB)
  • http://www.math.ethz.ch/~baltes/ftp/pitfalls.pdf - Correlation and dependence in risk management: properties and pitfalls, Embrechts, P., McNeil, A., Straumann, D. (2002), Risk Management: Value at Risk and Beyond, ed. M.A.H. Dempster, Cambridge University Press, Cambridge, pp. 176-223 (PDF; 784 KB)