Deinostratos

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Deinostratos (griechisch Δεινόστρατος, * ca. 390 v. Chr.; † ca. 320 v. Chr.) war ein griechischer Mathematiker und Geometer und Bruder von Menaichmos. Er ist dadurch bekannt, dass er die Quadratrix des Hippias zur Lösung des Problems der Quadratur des Kreises entwickelte (Satz des Dinostratos).

Er wird auch Dinostratos zitiert oder in latinisierter Form Dinostratus.

Leben und Werk[Bearbeiten]

Deinostratos’ Hauptbeitrag zur Mathematik war seine Lösung der Quadratur des Kreises. Um dieses Problem zu lösen, nutzte Deinostratos die Trisektrix von Hippias von Elis, die dann später – nachdem Deinostratos das Problem gelöst hatte – als Quadratrix bekannt wurde.[1] Obwohl Deinostratos dieses Problem löste, benutzte er hierfür nicht allein Lineal und Zirkel und daher war es für die Griechen klar, dass seine Lösung gegen die fundamentalen Prinzipien ihrer Mathematik verstoßen hatte.[1] Über 2000 Jahre später sollte erst bewiesen werden, dass die Quadratur des Kreises unmöglich ist, wenn man nur Lineal und Zirkel benutzt.

Literatur[Bearbeiten]

  •  Carl B. Boyer: A History of Mathematics. 2. Auflage. John Wiley & Sons, 1991, ISBN 0471543977.

Einzelnachweise[Bearbeiten]

  1. a b  Carl Benjamin Boyer: A History of Mathematics. 1991, S. 96–97.: „Deinostratos, Bruder von Menaichmos, war ebenfalls Mathematiker und während der eine die Würfelverdopplung "löste", "löste" der andere die Quadratur des Kreises. Die Quadratur war eine einfache Angelegenheit, wenn man erst einmal die augenfällige Eigenschaft der Endpunktes Q der Trisectrix von Hippias bemerkt hatte, wie Deinostratos. Wenn die Gleichung der Trisectrix (Fig. 6.4) πrsin θ = 2aθ ist, wobei a die Seite des Quadrats ABCD ist, die mit der Kurve assoziiert ist, [...] dann ist Deinostratos' Theorem etabliert - d.h. AC/AB = AB/DQ. [...] Insoweit als Deinostratos aufzeigte, dass die Trisectrix von Hippias einen Kreis zu quadrieren hilft, wurde diese Kurve bekannter unter der Bezeichnung Quadratrix. Für die Griechen war es selbstverständlich immer klar, dass die Verwendung der Kurve bei der Trisektions- und Quadraturproblemen die Spielregeln verletzte, nämlich, dass nur Kreise und Geraden erlaubt waren. Die "Lösung" von Hippias und Deinostratos, wie ihre Autoren feststellten, waren sophistisch; so kam es, dass die Suche nach weiteren Lösungen (kanonisch oder illegitim), fortgesetzt wurden mit dem Ergebnis, dass verschiedene neue Kurven von griechischen Geometern entdeckt wurden.“