Deontische Logik

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Deontische Logik ist der Bereich der Logik, in der es um normative Begriffe wie Verpflichtung, Erlaubnis usw. geht. Eine bestimmte deontische Logik ist ein formales System, in dem es für derartige Begriffe formale Ausdrücke gibt, üblicherweise OA für eine Verpflichtung, A zu tun, und PA für die Erlaubnis, A zu tun. Der Begriff deontisch stammt von dem Altgriechischen déon, deutsch: das Nötige, das Angemessene.

Geschichte[Bearbeiten]

Frühe Deontische Logik[Bearbeiten]

Philosophen der indischen Mimamsa Schule und der Alten Griechen bemerkten die formalen logischen Relationen der deontischen Konzepte[1]. Philosophen des späten Mittelalters verglichen deontische Konzepte mit alethischen.[2] In Elementa juris naturalis bemerkte Leibniz, die logischen Relationen zwischen licitum (erlaubt), illicitum (verboten), debitum (geboten) und indifferens (egal) seien äquivalent zu denen zwischen possibile (möglich), impossibile (unmöglich), necessarium (notwendig) und contingens (kontingent).

Mallys erste Deontische Logik[Bearbeiten]

Ernst Mally, ein Schüler von Alexius Meinong, war der erste, der ein formales System der deontischen Logik in Grundgesetze des Sollens vorschlug, er gründete dieses auf die Syntax von Whiteheads und Russells Aussagenkalkül. Mallys deontisches Vokabular bestand aus den logischen Konstanten U und ∩, dem einwertigen Junktor ! und den zweiwertigen Junktoren f und ∞.

* Mally las !A als "A soll der Fall sein".
* Er las A f B als "A benötigt B" .
* Er las A ∞ B als "A und B benötigen einander."
* Er las U als "bedingungslose Verpflichtung".
* Er las ∩ als "bedingungsloses Verbot".

Mally definierte f, ∞ und ∩ wie folgt:

Def. f. A f B = A → !B
Def. ∞. A ∞ B = (A f B) & (B f A)
Def. ∩. ∩ = ¬U

Mally schlug fünf informelle Prinzipien vor:

(i) Falls A B benötigt und falls aus B C folgt, dann benötigt A C.
(ii) Falls A B benötigt und falls A C benötigt, dann benötigt A B und C.
(iii) A benötigt B falls und nur falls es verpflichtend ist, dass B aus A folgt.
(iv) Die bedingungslose Verpflichtung ist verpflichtend.
(v) Die bedingungslose Verpflichtung benötigt nicht ihre eigene Negation.

Er formalisierte diese Prinzipien als seine Axiome:

I. ((A f B) & (B → C)) → (A f C)
II. ((A f B) & (A f C)) → (A f (B & C))
III. (A f B) ↔ !(A → B)
IV. ∃U !U
V. ¬(U f ∩)

Aus diesen Axiomen deduzierte Mally 35 Theoreme, von denen er viele seltsam fand. Die Axiome III. und IV. vermengen Faktensätze und Normen und verstoßen somit gegen Humes Gesetz. Karl Menger zeigte, dass !A ↔ A ein Theorem ist, so dass die Einführung des Zeichens ! irrelevant ist, weil bei Mally A sein soll, wenn A der Fall ist,[3] was Mallys System diskreditierte.[4] Mally führte den Begriff "deontisch" im Deutschen ein.[5]

von Wrights erste sinnvolle Deontische Logik[Bearbeiten]

Das erste sinnvolle System der deontischen Logik wurde von G. H. von Wright vorgeschlagen[6][7]. Von Wright führte den Begriff deontic im Englischen ein. Seither haben viele Philosophen und Informatiker viele Systeme der deontischen Logik entwickelt. Trotzdem blieb die deontische Logik eines der umstrittensten Teilgebiete der Logik.[8]

G. H. von Wright gründete 1951 seine deontische Logik nicht auf die Syntax des Aussagenkalküls wie Mally, sondern auf die alethische Modallogik von Leibniz, die Mally nicht beachtet hatte. Doch 1964 kehrte er in A New System of Deontic Logic zur Syntax des Aussagenkalküls zurück, was er in Deontic Logic: A Personal View und A New System of Deontic Logic näher erläuterte.

Klassische deontische Logik[Bearbeiten]

In von Wrights erstem System wurden Verpflichtbarkeit und Erlaubbarkeit als Handlungseigenschaften aufgefasst. Doch kurz darauf fand man heraus, dass man einer deontische Logik von Aussagen eine einfache und elegante Kripke-Semantik geben konnte, und Wright schloß sich an. Die so spezifizierte deontische Logik wurde die "Klassische Deontische Logik", oft bezeichnet als SDL, KD oder einfach D. Sie wird axiomatisiert durch die folgende Ergänzung der Klassischen Aussagen-Logik:

O(A \rightarrow B) \rightarrow (OA \rightarrow OB)
OA\to\lnot O\lnot A

Die Axiome besagen:

  • Falls es sein soll, dass A B impliziert, dann soll B sein, falls A sein soll.
  • Falls A sein soll, dann ist es nicht verpflichtend, dass A nicht sei.

FA heißt, dass A verboten ist, und ist formal definiert als O \lnot A oder \lnot PA.

Es gibt zwei wichtige Erweiterungen von SDL: Die erste besteht in der Ergänzung eines alethischen modalen Operators \Box, um Kants These, sollen impliziere können, auszudrücken:

 OA \to \Diamond A.

wobei \Diamond\equiv\lnot\Box\lnot. Meist gilt \Box mindestens als KT-Operator, meist sogar als S5-Operator.

Die zweite wichtige Ergänzung besteht aus der Ergänzung durch einen Operator der konditionalen Verpflichtung O(A/B): "Es ist verpflichtend, daß A, falls B". Die Ergänzung ist motiviert durch folgenden Fall: Es gelte, dass die Hungernden versorgt werden sollten. Werden Hungernde versorgt, so folgt daraus, dass es Hungernde gibt. Durch die Grundprinzipien der SDL folgt, dass es Hungernde geben solle. Das Argument gilt in jeder Normalen Modallogik wegen des Basis-Axioms K der SDL und des Prinzips:

\vdash A\to B\Rightarrow\ \vdash OA\to OB.

Führt man einen intensionalen konditionalen Operator ein, kann man sagen: Die Hungernden sollen versorgt werden, aber nur wenn es tatsächlich Hungernde gibt, formal geschrieben O(A/B). Daraus kann man dann nicht mehr ableiten, dass es Hungernde geben soll.

Dyadische deontische Logik[Bearbeiten]

Ein wichtiges Problem der deontischen Logik ist die korrekte Repräsentation konditionaler Verpflichtungen, z.B. Falls du rauchst (s), benutze einen Aschenbecher (a)! Es ist unklar, ob eine der folgenden Repräsentationen adäquat ist:

O(\mathrm{smoke} \rightarrow \mathrm{ashtray})
\mathrm{smoke} \rightarrow O(\mathrm{ashtray})

Bei der ersten Repräsentation ist es eine Leere Wahrheit, dass man bei der Übertretung eines Verbots irgendeine weitere Handlung ausführen muß, egal ob diese verpflichtend, erlaubt oder verboten ist[9].

Bei der zweiten Repräsentation ergibt sich das Mörder-Paradox: Aus (1) Falls du mordest, tue es sanft!, (2) Du mordest. und (3) Um sanft zu morden, mußt du morden. ergibt sich: Du sollst morden!

Einige deontischen Logiker reagierten darauf mit der Entwicklung von dyadischen deontischen Logiken, die binäre deontische Operatoren beinhalten:

O(A \mid B) heißt es ist verpflichtend, daß A, falls B
P(A \mid B) heißt es ist erlaubt, daß A, falls B.

(Die Schreibweise folgt der für Bedingte Wahrscheinlichkeit.) Dyadische deontische Logik hat nicht das Problem der deontischen Logik mit einwertigen Operatoren, jedoch andere Probleme.

Andere Variationen[Bearbeiten]

Viele andere Varianten der Deontischen Logik wurden entwickelt, z.B. nicht-monotone deontische Logiken, parakonsistente deontische Logiken und dynamische deontische Logik.

Jørgensens Dilemma[Bearbeiten]

Deontische Logik hat ein Problem - Jørgensens Dilemma. Normen sind nicht wahrheitsfähig, doch werden in der Logik Wahrheitswerte verwendet. Es gibt zwei mögliche Antworten:

Siehe auch[Bearbeiten]

Einzelnachweise[Bearbeiten]

  1. Huisjes, C. H., 1981, "Norms and logic," Thesis, University of Groningen
  2. Knuuttila, Simo, 1981, “The Emergence of Deontic Logic in the Fourteenth Century,” in New Studies in Deontic Logic, Ed. Hilpinen, Risto, pp. 225-248, University of Turku, Turku, Finland: D. Reidel Publishing Company.
  3. Menger, Karl, 1939, "A logic of the doubtful: On optative and imperative logic," in Reports of a Mathematical Colloquium, 2nd series, 2nd issue, pp. 53-64, Notre Dame, Indiana: Indiana University Press.
  4. Mally's Deontic Logic von Gert Lokhorst bei der Stanford Encyclopedia of Philosophy
  5. Mally, Deontik, 1926
  6. G. H. von Wright, Deontic Logic in: Mind, 1951
  7. Albert J.J. Anglberger, Eine Mögliche-Welten-Semantik für G. H. von Wrights ersten Kalkül der deontischen Logik in: Conceptus-Zeitschrift für Philosophie, Nr. 89-90, 2004
  8. Albert J.J. Anglberger, Non-Kognitivismus und Normenlogik: Betrachtungen zu einer mehrwertigen Mögliche-Welten-Semantik, in: Kreuzbauer, G./Gratzl, N./Hiebl, E. (Eds.): Persuasion und Wissenschaft: Aktuelle Fragestellungen von Rhetorik und Argumentationstheorie 2006, Wien, LIT-Verlag, 2007
  9. Von Wright 1956, zitiert in Aqvist 1994

Literatur[Bearbeiten]

  • Lennart Åqvist, 1994, "Deontic Logic" in D. Gabbay and F. Guenthner, ed., Handbook of Philosophical Logic: Volume II Extensions of Classical Logic. Kluwer.
  • Hilpinen, Risto, 2001, "Deontic Logic," in Goble, Lou, ed., The Blackwell Guide to Philosophical Logic. Blackwell.
  • G. H. von Wright, 1951. "Deontic logic," Mind 60: 1-15.
  • Franz von Kutschera: Einführung in die Logik der Normen, Werte und Entscheidungen. Freiburg i. Br./ München, Alber, 1973.
  • Hans Lenk (Hrsg.): Normenlogik. Grundprobleme der deontischen Logik. Pullach bei München, Verlag Dokumentation, 1974.

Weblinks[Bearbeiten]