Dichlordiphenyltrichlorethan

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Dieser Artikel beschreibt das Insektizid DDT. Für weitere Bedeutungen siehe DDT (Begriffsklärung).
Strukturformel
Strukturformel von Dichlordiphenyltrichlorethan
Allgemeines
Name Dichlordiphenyltrichlorethan
Andere Namen
  • DDT
  • 1,1,1-Trichlor-2,2-bis-(4-chlorophenyl)ethan (IUPAC)
  • Clofenotan (INN)
  • Chlorphenotan
Summenformel C14H9Cl5
CAS-Nummer 50-29-3
ATC-Code

P03AB01

Kurzbeschreibung

farblos, charakteristischer Geruch, brennbar, in Reinform Kristalle, techn. Produkt wachsartig[1]

Eigenschaften
Molare Masse 354,49 g·mol−1
Aggregatzustand

fest

Dichte

1,55 g·cm−3 [2]

Schmelzpunkt

108,5–109 °C [2]

Siedepunkt

185–187 °C (7 Pa) [2]

Dampfdruck

gering[2]

Löslichkeit
  • praktisch unlöslich in Wasser (ca. 1,2 µg·l−1 bei 20 °C)[2]
  • leicht löslich in Cyclohexan, 1,4-Dioxan und Aceton
Sicherheitshinweise
Bitte die eingeschränkte Gültigkeit der Gefahrstoffkennzeichnung bei Arzneimitteln beachten
GHS-Gefahrstoffkennzeichnung aus EU-Verordnung (EG) 1272/2008 (CLP) [3]
06 – Giftig oder sehr giftig 08 – Gesundheitsgefährdend 09 – Umweltgefährlich

Gefahr

H- und P-Sätze H: 351​‐​301​‐​372​‐​410
P: 273​‐​281​‐​301+310​‐​314​‐​501 [4]
EU-Gefahrstoffkennzeichnung [5] aus EU-Verordnung (EG) 1272/2008 (CLP) [3]
Giftig Umweltgefährlich
Giftig Umwelt-
gefährlich
(T) (N)
R- und S-Sätze R: 25​‐​40​‐​48/25​‐​50/53
S: (1/2)​‐​22​‐​36/37​‐​45​‐​60​‐​61Vorlage:S-Sätze/Wartung/mehr als 5 Sätze
MAK

1 mg·m−3 [2]

Toxikologische Daten

113 mg·kg−1 (LD50Ratteoral)[1]

Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.

Vorlage:Infobox Chemikalie/Summenformelsuche vorhanden

Dichlordiphenyltrichlorethan, abgekürzt DDT, ist ein Insektizid, das seit Anfang der 1940er-Jahre als Kontakt- und Fraßgift eingesetzt wird. Wegen seiner guten Wirksamkeit gegen Insekten, der geringen Toxizität für Säugetiere und des einfachen Herstellungsverfahrens war es jahrzehntelang das weltweit meistverwendete Insektizid. Allerdings reicherte es sich wegen seiner chemischen Stabilität und guten Fettlöslichkeit im Gewebe von Menschen und Tieren am Ende der Nahrungskette an.

Im Laufe der Zeit wurde festgestellt, dass DDT und einige seiner Abbauprodukte hormonähnliche Wirkungen zeigen. Greifvögel legten Eier mit dünneren Schalen, was zu erheblichen Bestandseinbrüchen führte. DDT geriet unter Verdacht, beim Menschen Krebs auslösen zu können. Aus diesen Gründen wurde die Verwendung von DDT von den meisten westlichen Industrieländern in den 1970er-Jahren verboten. In Ländern, die die Stockholmer Konvention aus dem Jahr 2004 ratifiziert haben, ist die Herstellung und Verwendung von DDT nur noch zur Bekämpfung von krankheitsübertragenden Insekten, insbesondere den Überträgern der Malaria zulässig.

In einigen Ländern wird DDT weiterhin landwirtschaftlich eingesetzt, etwa in Indien,[6] Nordkorea und möglicherweise in anderen Ländern.[7]

Geschichte[Bearbeiten]

Entdeckung[Bearbeiten]

Erstmals synthetisiert wurde DDT im Jahre 1874 durch den österreichischen Chemiker Othmar Zeidler. Die insektizide Wirkung wurde allerdings erst 1939 von dem Schweizer Paul Hermann Müller entdeckt, der hierfür 1948 den Nobelpreis in Medizin erhielt. Müller war Mitarbeiter einer Forschungsgruppe bei der J. R. Geigy AG, die an Schmeißfliegen ein Screening verschiedener Chemikalien auf ihre insektizide Wirksamkeit durchführte. Geigy brachte DDT 1942 unter den Handelsnamen Gesarol (Mittel zum Pflanzenschutz und gegen Vorratsschädlinge) und Neocid (Hygienebereich) auf den Markt.

Kriegsjahre[Bearbeiten]

Im Deutschen Reich interessierte man sich besonders wegen der Wirksamkeit gegen den Kartoffelkäfer für DDT. Das Reichsministerium für Ernährung und Landwirtschaft gab 1942 eine Bestellung über 10.000 t Gesarol auf, was etwa 500 t Reinsubstanz entsprach. Da das die eigenen Kapazitäten überschritt, schloss Geigy 1943 einen Lizenzvertrag mit der Schering AG. Im April 1943 begann auch das Geigy-Zweigwerk im badischen Grenzach DDT herzustellen. Bei der Wehrmacht wurde Ende 1942 zur Läusebekämpfung das Präparat Lauseto der I.G. Farben eingeführt. Anfang 1944 ergab eine Analyse in den Labors von Schering, dass dieses 15 % DDT enthielt. Die I.G. Farben sicherte Geigy daraufhin die Zahlung von Lizenzgebühren für Lauseto und ihr neuentwickeltes Fliegenmittel Gix zu. Das Produktionsvolumen von DDT im Deutschen Reich wurde nie ausgeschöpft, da die I.G. Farben das für die Herstellung benötigte Chloral nicht in den erforderlichen Mengen lieferte.[8]

US-Soldaten zeigen, wie man mit DDT-Pulver entlaust

Das amerikanische Department of Agriculture erhielt etwa Mitte des Jahres 1942 einige Proben Gesarol von Geigy. Während der Jahre 1942 und 1943 wurde DDT in den USA intensiv auf seine Wirksamkeit und eventuelle schädliche Auswirkungen untersucht. Ab Mitte 1944 wurden verstärkt Methoden zur effizienten Herstellung und Ausbringung entwickelt. Ende des Jahres 1944 wurden monatlich etwa 900 Tonnen DDT für das US-Militär hergestellt, bei Kriegsende waren es etwa 1350 Tonnen im Monat.

Einer der ersten großen Einsätze von DDT war zur Läusebekämpfung bei einer Fleckfieber-Epidemie, die 1943/44 in Neapel ausgebrochen war. Durch eine systematische und konsequente Bekämpfung der krankheitsübertragenden Läuse mit Pyrethrum und DDT konnte die Seuche eingedämmt werden. Mit Hilfe eines damals neuen Verfahrens konnten große Teile der Bevölkerung rasch entlaust werden; dabei wurde das Insektenpulver mit einem Pulverzerstäuber am Kragen zwischen die Lagen der Kleidung geblasen.[9] Die Presse schrieb den Erfolg hauptsächlich DDT zu, es galt fortan als „Wundermittel“ gegen insektenübertragene Krankheiten.[10]

Der Großteil des DDT wurde zur Malariavorbeugung im Südpazifik verwendet. Vom Flugzeug aus wurden ganze Inseln mit DDT-Lösung eingesprüht, die Aufwandmenge war mit 220 bis 280 g DDT/ha niedrig.[10] Zur Ausrüstung der in Südostasien eingesetzten amerikanischen Soldaten gehörte eine Sprühdose mit DDT oder Pyrethrum, um Behelfsunterstände mückenfrei zu machen. Gegen Kriegsende war DDT für das US-Militär zum Standardmittel zur Entwesung von Soldaten, Kriegsgefangenen und der Zivilbevölkerung geworden.[11]

Landwirtschaft[Bearbeiten]

DDT-Einsatz in der US-Landwirtschaft 1963, insgesamt etwa 14.500 Tonnen[10][11]

Das War Production Board der USA gab DDT am 1. August 1945 für die zivile Nutzung frei. Durch Presseberichte über die erfolgreiche Malaria- und Fleckfieberbekämpfung während des Krieges waren die Erwartungen hoch. Die FDA hatte Bedenken gegen eine schnelle Freigabe, da DDT bei einer Untersuchung zu Leberschäden bei Ratten geführt hatte. Es gab bereits Hinweise, dass es sich im Körper und in der Milch anreichern konnte. Da die FDA damals nicht die Befugnis hatte, eine Freigabe zu verhindern, legte sie einen provisorischen Höchstgehalt von 7 ppm für Lebensmittel fest. In Milch sollte überhaupt kein DDT toleriert werden. Der Preis pro Pfund DDT betrug anfangs mehr als 1 US-$, bis Mitte der 1950er sank er auf 0,25 US-$.[10]

In der Folgezeit wurde DDT vielerorts als Pflanzenschutzmittel in der Landwirtschaft angewendet. Im Obst- und Weinbau ersetzte DDT bald das bis dahin häufig verwendete Bleiarsenat. Es fand auch in Insektensprays für den Haushalt Verwendung.

Im Jahre 1962 war DDT allein in den USA für 334 verschiedene landwirtschaftliche Anwendungsfälle registriert.[12] DDT war über einige Jahrzehnte hinweg das am häufigsten verwendete Insektizid weltweit. Die Aufwandmengen in der Landwirtschaft lagen je nach Kultur in dem weiten Bereich von 0,5 bis 35 kg DDT/ha.[13] Beim Baumwollanbau war der DDT-Einsatz besonders hoch.

Großaktionen und Forstwirtschaft[Bearbeiten]

Eine An-2 der Deutschen Lufthansa (DDR) bringt 1957 Stäubemittel gegen den Kiefernspanner aus.

In der Schweiz wurden 1950 DDT und HCH im sogenannten „Maikäferkrieg“ getestet. Die Insektizide wurden mit Motorspritzen, Nebelblasern und Sprühflugzeugen entlang der Waldränder ausgebracht. Diesen Aktionen fielen auch zahlreiche andere Insekten zum Opfer, Bienenzüchter mussten entschädigt werden, unter Naturschützern und in der Bevölkerung regte sich Protest. Die begleitende wissenschaftliche Auswertung ergab, dass mit DDT behandelte Waldränder vom Maikäfer gemieden wurden, der einfach auf unbehandelte Bestände auswich. Geigy stellte die Aktionen dennoch als Erfolg dar und konnte die Fortsetzung der Maikäferbekämpfung mit Hilfe der Politik durchsetzen.[14]

Gegen den Ulmensplintkäfer, den Überträger des für das Ulmensterben verantwortlichen Pilzes, wurde in den USA von 1947 bis in die 1960er-Jahre DDT verwendet. Die Ulme war ein häufiger Alleebaum in den Vorstädten, auch dort wurde DDT versprüht. Wegen der hohen Dosierung (etwa 700 g DDT/Baum) kam es zu zahlreichen akuten Vergiftungen bei Vögeln. Aus einigen Orten, in denen viele Ulmen mit dem Insektizid behandelt worden waren, verschwanden die Singvögel komplett. Naturschützer und Wissenschaftler wurden auf die Umweltwirkungen von DDT aufmerksam und begannen sich damit zu befassen.

Zur Bekämpfung des Schwammspinners wurden 1956 etwa 12.000 km2, größtenteils im Bundesstaat New York, vom Flugzeug aus mit DDT besprüht. Auf der behandelten Fläche lagen auch Vorstädte und Farmland. Da DDT auf Weideflächen gelangt war, war die Milch der Kühe von diesen Weiden nicht mehr verkäuflich. Außerdem kam es zu Fischsterben. Einige Einwohner von Long Island versuchten das Sprühprogramm gerichtlich zu stoppen (Long Island case), hatten damit aber keinen Erfolg.[10]

In der DDR wurde DDT gegen den Borkenkäfer verwendet. Wegen starken Befalls der Forste wurden dort 1983/84 insgesamt etwa 600 Tonnen DDT ausgebracht, was allerdings eine untypisch große Menge war.[13]

Auch zur Desinfektion von Insektensammlungen wurde DDT früher verwendet.[15]

Malariabekämpfung[Bearbeiten]

Spuren der Malariabekämpfung in Italien

Beim Einsatz von DDT zur Malariabekämpfung werden die Innenwände von Häusern und Hütten mit einer DDT-Suspension besprüht (Indoor Residual Spraying, IRS). Wenn sich die Malariamücken (Anopheles) dort absetzen, nehmen sie eine tödliche Dosis DDT auf. Da DDT an der Wand etwa ein halbes Jahr wirksam bleibt, muss die Sprühaktion zweimal jährlich durchgeführt werden, bei saisonal auftretender Malaria nur einmal. Pro Quadratmeter Wandfläche sind 1–2 g DDT notwendig.

Ab Mitte der 1950er-Jahre begann die WHO das Global Eradication of Malaria Program. Neuansteckungen infolge von Mückenstichen sollten durch Besprühen der Wände mit DDT-Lösung verhindert werden. Parallel dazu sollten die bereits Erkrankten mit Medikamenten behandelt werden. Die Kampagne war zunächst äußerst erfolgreich. In Indien konnte die Zahl der jährlichen Neuinfektionen mit Malaria von 100 Millionen (1952) auf 50.000 (1961) gesenkt werden. Ähnliche Erfolge wurden auch in Pakistan, Ceylon (heute Sri Lanka), Paraguay, Venezuela, Mexiko und Zentralamerika erzielt. In Europa war Malaria Ende der 1960er-Jahre ausgerottet.

Aus verschiedenen Gründen stieg danach in einigen der beteiligten tropischen Ländern die Zahl der Malaria-Infektionsfälle wieder an. Da in der Zwischenzeit DDT-Resistenzen bei verschiedenen Arten der Anophelesmücke aufgetreten waren, brachte die Wiederaufnahme der DDT-Sprühprogramme nicht mehr denselben Erfolg wie beim ersten Einsatz. Die WHO musste 1972 eingestehen, dass das ehrgeizige Ziel der weltweiten Ausrottung der Malaria nicht zu erreichen war. In der Folgezeit war Schadensbegrenzung durch malaria control das offizielle Ziel.

Bei der Malariabekämpfung blieben die Verwendung von DDT und anderen Organochlorpestiziden auch nach Ende des Ausrottungsprogramms 1972 Standard. Ab 1992 wurden von der WHO mit Pyrethroiden imprägnierte Moskitonetze empfohlen. Auf dem Einsatz von DDT beruhende Großprojekte galten ab 1993 als nicht „nachhaltig“. Nach einer Empfehlung der WHO von 1997 sollte DDT nur noch als Bestandteil „integrierter“ Programme eingesetzt werden.[11] Seit 2006 wird DDT von der WHO für die Anwendung innerhalb von Gebäuden ausdrücklich empfohlen, da der zu erwartende Effekt auf die Umgebung gering ist, während die Vektoren (krankheitsübertragende Insekten), welche sich vor und nach den Blutmahlzeiten an den Hauswänden absetzen, gut erreicht werden können.[16]

Verbot in den USA[Bearbeiten]

Mitte der 1950er-Jahre wurde die schädigende Wirkung von DDT auf Vögel bekannt. Im Jahre 1962 veröffentlichte die US-amerikanische Biologin Rachel Carson das Buch Silent Spring („Der stumme Frühling“), mit dem sie die Probleme und Risiken des Einsatzes von Pestiziden einer breiten Öffentlichkeit bekanntmachte. Das Buch löste in den USA eine teilweise heftig geführte Debatte über den Einsatz von DDT aus. Der großflächige Einsatz (wie gegen den Schwammspinner) sowie die Verwendung sehr hoher Dosierungen (wie gegen den Ulmensplintkäfer) galten bald auch unter DDT-Befürwortern als missbräuchlich und wurden eingestellt.[10]

Die Vogelschutzorganisation Audubon Society richtete 1965 den Rachel Carson Fund ein, um vor Gericht gegen den Einsatz von DDT vorzugehen. Der 1967 aufgelegte Environmental Defense Fund verfolgte dieselbe Taktik. Ein Durchbruch gelang ihnen 1969 bei einer öffentlichen Anhörung im Bundesstaat Wisconsin. Dabei ging es um die Frage, ob die Anwendung von DDT für Menschen und Tiere sicher sei. Die Vertreter des USDA mussten im Kreuzverhör zugeben, keine eigenen Toxizitätstests vorgenommen, sondern Herstellerangaben übernommen zu haben. Im Schlussbericht der Anhörung wurde empfohlen, den Gebrauch von DDT in Wisconsin einzustellen. In der Zwischenzeit hatte Präsident Nixon ein Beratergremium eingerichtet, das im November 1969 ein „Phasing out“ von DDT empfahl. Nixon entschied, dass US-Regierungsbehörden nach einer Übergangsfrist von zwei Jahren kein DDT mehr verwenden sollten.[11]

Der Leiter einer Anhörung durch die Environmental Protection Agency, Edmund M. Sweeney, kam in seinem Abschlussbericht zu der Auffassung, dass kein Gesetzesverstoß aufgrund fehlender Warnhinweise vorlag, DDT bei vorschriftsmäßiger Anwendung kein unverhältnismäßiges Risiko in Vergleich zum Nutzen darstelle und Ersatzstoffe für DDT teilweise deutlich gefährlicher seien.[17] EPA-Administrator William D. Ruckelshaus verkündete dennoch am 14. Juni 1972 ein Verbot der Ausbringung von DDT in der Landwirtschaft, das nach sechs Monaten in Kraft treten sollte. Als Begründung wurde unter anderem auf seine Langlebigkeit, seine Biomagnifikation und toxikologischen Wirkungen sowie die Verfügbarkeit von wirksamen und ökologisch weniger schädlichen Ersatzstoffen verwiesen.[18] Der Einsatz zur Krankheitsbekämpfung sowie der Export blieben jedoch erlaubt.[19]

Einige DDT-Hersteller und Anwender versuchten diese Entscheidung anzufechten, ihre Klage wurde allerdings im Dezember 1973 vom Appellationsgerichtshof in Washington abgewiesen. Der Environmental Defense Fund seinerseits versuchte ohne Erfolg, ein Herstellungs- und Exportverbot für DDT einzuklagen. In den Jahren 1973 und 1974 erteilte die EPA Ausnahmegenehmigungen für den Einsatz gegen den Gestreiften Blattrandkäfer (pea leaf weevil). 1974 wurde ein großflächiger DDT-Einsatz gegen eine Trägspinner-Art (Douglas fir tussock moth) in den Wäldern im Nordwesten der USA genehmigt.[10]

Verbote in Europa[Bearbeiten]

Silent Spring war zwar auch in Europa erfolgreich, das Echo in den Medien und in der öffentlichen Diskussion blieb jedoch geringer. Die DDT-Frage spielte für Politik und Umweltbewegungen bei weitem nicht die große Rolle wie in den USA. Diskussionen und Entscheidungen über Zulassung oder Verbot von DDT fanden in den zuständigen Fachgremien statt. Die Entwicklung in den USA wurde dort aufmerksam verfolgt.

Im Frühjahr 1968 untersagten die USA und Kanada die Einfuhr von Käse aus der Schweiz, weil er die Höchstgehalte an Lindan, Dieldrin und DDT überschritt. Als Hauptursache wurde eine insektizidhaltige Anstrichfarbe ausgemacht, mit der viele Kuhställe zur Fliegenbekämpfung gestrichen worden waren.

Als erstes europäisches Land verbot Schweden mit Wirkung zum 1. Januar 1970 die Verwendung von DDT. Im Frühjahr 1970 beschränkte die Eidgenössische Forschungsanstalt Wädenswil den Einsatz von DDT auf elf Insektenarten. Eine Diskussion in Politik und Medien war erst ein Jahr später, im Frühjahr 1971, in Gang gekommen. In der Schweiz war ab Januar 1972 die Verwendung in der Landwirtschaft nicht mehr zulässig. Mit Inkrafttreten des eidgenössischen Giftgesetzes am 1. April 1972 wurden dort auch alle anderen Anwendungen von DDT verboten. Die Regierung der Bundesrepublik Deutschland erklärte im Sommer 1971, sie beabsichtige den Einsatz von DDT zu verbieten. Daraufhin wurde mit dem DDT-Gesetz ein Ausbringungsverbot ausgearbeitet und im August 1972 verabschiedet.[11] Herstellung und Vertrieb von DDT sind in der Bundesrepublik Deutschland seit dem 1. Juli 1977 verboten.[20] In Österreich wurde DDT in der Folgezeit nur noch wenig verwendet, aber erst 1992 verboten.[21]

Weitere Entwicklung und heutige Situation[Bearbeiten]

Nahaufnahme aus einer mit DDT-haltigem Holzschutzmittel behandelten Dachkonstruktion

In zahlreichen Entwicklungsländern, aber auch in den Staaten des Ostblocks, wurde DDT weiterhin hergestellt und verwendet. In der Land- und Forstwirtschaft der DDR hatte DDT ursprünglich eine viel größere Bedeutung als in Westdeutschland. Allerdings ging der DDT-Einsatz im Verlauf der 1970er-Jahre auch hier stark zurück.[13] Zuletzt wurde es nur noch zum Beizen von Zwiebelsamen verwendet.[20] DDT war in dem Holzschutzmittel Hylotox 59 enthalten, das in der DDR bis 1988 hergestellt wurde. Daher ist DDT in Gebäuden in Ostdeutschland noch häufig nachweisbar. Es durfte übergangsweise noch bis zum 30. Juni 1991 eingesetzt werden. In Westdeutschland ist DDT in ehemaligen Housing-Areas der US-Armee der 50er und 60er Jahre, welche nun meist Mietwohnungen sind, teils noch in bedenklichen Mengen nachweisbar.[22][23]

In Indien wurde der DDT-Einsatz in der Landwirtschaft im Mai 1989 verboten.[11] Zur Bekämpfung der Malaria ist es dort heute noch im Einsatz. Im Rahmen des bis 2007 laufenden Fünfjahresplans sollten 66.000 t DDT-Pulver (Wirkstoffgehalt 50 %) zur Bekämpfung von Malaria und Leishmaniose eingesetzt werden.[24] Die Wirksamkeit gegen Malariaüberträger wird unter indischen Wissenschaftlern zurzeit kontrovers diskutiert.[24][25]

Die Stockholmer Konvention[26] vom Mai 2001, die im Mai 2004 in Kraft trat, beschränkt den Einsatz von DDT auf die Bekämpfung krankheitsübertragender Insekten (Vektoren). Außerdem darf es weiterhin als Ausgangsstoff für die Produktion des Akarizids Dicofol hergestellt werden. Die Verwendung von DDT soll der WHO und dem Sekretariat der Stockholmer Konvention mitgeteilt werden. Derzeit (Oktober 2008) haben 15 Staaten die Verwendung von DDT zur Seuchenbekämpfung angezeigt.[27] Es gibt Hinweise darauf, dass mindestens 21 Staaten DDT einsetzen.[28] Die registrierten Staaten sollen alle drei Jahre über die eingesetzte Menge an DDT, ihre Verwendung und die Krankheitsbekämpfungsstrategie Bericht erstatten.

Im September 2006 hat der Direktor des „Global Malaria Program“ der WHO angekündigt, dass in Zukunft wieder verstärkt DDT eingesetzt werden soll.[29] Dadurch wird für die nächsten Jahre mit einem etwas ansteigenden DDT-Verbrauch gerechnet.[28]

Produktionsmengen[Bearbeiten]

Die Produktionszahlen von DDT sind nicht in allen Ländern durchgängig erhoben und veröffentlicht worden. Die USA waren lange Zeit der Hauptproduzent von DDT, dort wurden 1960 74.600 t hergestellt, 1970 waren es noch 26.900 t. Aus der Bundesrepublik sind nur die Produktionsdaten für 1965 bekannt, damals war sie mit 30.000 t der zweitgrößte DDT-Hersteller der Welt. In der UdSSR wurden in der zweiten Hälfte der 1960er-Jahre zwischen 15.000 und 25.000 t pro Jahr produziert, in Italien waren es 10.000 t jährlich. In den Staaten der EU wurden 1981 noch ca. 9.500 t hergestellt.[13]

Für 2005 wurde die Weltjahresproduktion von DDT auf 6269 t Wirkstoff geschätzt, die sich auf Indien (4250 t) und China aufteilen. Es wird vermutet, dass auch in Nordkorea etwa 300 t hergestellt wurden.[28]

Herstellung[Bearbeiten]

Im Labormaßstab wie bei der Fabrikation wird DDT nach demselben einfachen Verfahren hergestellt: Chloral und Chlorbenzol reagieren in konzentrierter Schwefelsäure zu DDT. Die Schwefelsäure nimmt das bei der Reaktion entstehende Wasser auf. Für die technische Herstellung wird lediglich ein säurefester Behälter benötigt, die Reaktionszeit liegt bei etwa acht Stunden. Anschließend wird das DDT getrocknet und zerkleinert.

Herstellung von DDT aus Chlorbenzol und Chloralhydrat

In den Anfangsjahren schienen keine besonderen Arbeitsschutz-Maßnahmen beim Umgang mit dem Endprodukt notwendig. Bei Arbeitern in der DDT-Produktion wurden sehr hohe DDT-Gehalte im Blut und Körpergewebe festgestellt. Da keine schädlichen Auswirkungen beobachtet wurden, galt das als weiterer Hinweis auf die Ungefährlichkeit von DDT.[11]

Isomere und Metaboliten[Bearbeiten]

Namenserklärung

Technisches DDT ist ein amorphes weißes Pulver, sein Schmelzpunkt liegt zwischen 80 und 94 °C.[12]

In technischem DDT ließen sich verschiedene Isomere und Nebenprodukte in unterschiedlichen Konzentrationen nachweisen:

Prozentuale Anteile an technischem DDT [13]
p,p′-DDT o,p′-DDT p,p′-DDD o,p′-DDD p,p′-DDE o,p′-DDE sonstige Referenz
77,1 14,9 0,3 0,1 4 0,1 3,5 IPCS 1989
65-80 15-21 ≤ 4       ≤ 1,5 DDOH UBA 1993

Die p,p′-Isomere werden häufig 4,4′-Isomere, die o,p′-Isomere 2,4′-Isomere genannt.

Hauptbestandteil von technischem DDT und im Wesentlichen für die insektizide Wirkung verantwortlich ist p,p′-DDT oder 1,1,1-Trichlor-2,2-bis-(p-chlorphenyl)-ethan (CAS-Nr. 50-29-3). In der Praxis wird p,p′-DDT nicht in Reinform verwendet, sondern das technische Gemisch.

o,p′-DDT (CAS-Nr. 789-02-6) ist mit Anteilen von 15 bis 21 % die häufigste Verunreinigung in technischem DDT. Es trägt nur unwesentlich zur insektiziden Wirkung bei, hat jedoch eine relativ starke östrogene Wirkung.

Dichlordiphenyldichlorethen, 1,1-Dichlor-2,2-bis-(p-chlorphenyl)ethen oder p,p′-DDE (CAS-Nr. 72-55-9) ist im technischen Gemisch mit etwa 4 % enthalten. Im menschlichen Körper wird p,p′-DDT hauptsächlich zu p,p′-DDE abgebaut. p,p′-DDE war im Wesentlichen für die Eierschalenverdünnung bei Greifvögeln verantwortlich.

2,4-DDE (CAS-Nr. 3424-82-6) hat nur einen Anteil von 0,1 % am technischen DDT. Es entsteht durch Abbau von o,p′-DDT.

Dichlordiphenyldichlorethan, 1,1-Dichlor-2,2-bis-(p-chlorphenyl)ethan oder p,p′-DDD (CAS-Nr. 72-54-8) wurde durch Kondensation von Dichloracetaldehyd mit Chlorbenzol hergestellt und als Insektizid verwendet. Produktionszahlen sind nicht bekannt, es hatte keine große Bedeutung.[12] In den 1950er-Jahren wurde DDD zur Bekämpfung von Stechmückenlarven im Wasser des Clear Lake (Kalifornien) ausgebracht. Durch Biomagnifikation reicherte es sich in der Nahrungskette an und führte zum Zusammenbruch des Renntaucher-Bestands an diesem See.[10]

o,p′-DDD oder 1-Chlor-4-[2,2-Dichlor-1-(2-Chlorphenyl)ethyl]benzol (CAS-Nr. 53-19-0) ist im technischen DDT mit einem Anteil von etwa 0,1 % enthalten. Es wird in der Veterinärmedizin unter dem Wirkstoffnamen Mitotan zur Behandlung des Cushing-Syndroms bei Hunden eingesetzt, verliert jedoch aufgrund seiner toxischen Eigenschaften gegenüber moderneren Medikamenten zunehmend an Bedeutung.

Wirkungsweise[Bearbeiten]

DDT wirkt hauptsächlich auf das periphere Nervensystem. Bei niedrigen Dosierungen kommt es dabei zu Übererregbarkeit, bei hohen zur Lähmung. Die Steigerung der Erregbarkeit tritt zuerst bei den Motoneuronen des Gehirns auf, Spinalnerven sind erst bei höheren Konzentrationen betroffen.[30] Bei DDT-Einwirkung werden Nervenzellen angeregt, spontan zu „feuern“, wodurch Muskeln kontrahieren. Es kommt zu Tremores des Körpers und der Extremitäten, den sogenannten „DDT-Jittern“. DDT führt über eine verstärkte Freisetzung von Neurotransmittern zu kleinen postsynaptischen Potentialen an den motorischen Endplatten, den Übergängen zwischen Nervensystem und Muskulatur. Dadurch werden Neurotransmitter „verbraucht“, was schließlich die Reizleitung unmöglich macht. Im Lauf einiger Stunden oder Tage führt DDT zu einer Lähmung und schließlich zum Tod des Insekts. Im Vergleich zu anderen Insektiziden tritt die Wirkung von DDT eher langsam ein, dabei wirkt es bei niedrigen Temperaturen stärker als bei hohen.

In der Membran der Nervenzellen von Insekten gibt es „para“-Natriumkanäle, deren Namen auf ihre Lage im sogenannten Paralyse-Bereich auf dem X-Chromosom von Drosophila zurückgeht. Sie sind spannungsgesteuert und ermöglichen den Einstrom von Natrium-Ionen während der Depolarisation, also beim Auslösen eines Nervenimpulses. Während der anschließenden Repolarisation, dem Wiederaufbau der Ruhespannung, und im Ruhezustand müssen die Natriumkanäle geschlossen sein. DDT kann sich an die Natriumkanäle anlagern und verhindert ihr Verschließen. Die Anlagerungsstelle ist vermutlich ein langgestreckter hydrophober Hohlraum, das DDT-Molekül reicht nur in seinen oberen Teil hinein. Die Säure-Gruppe der rascher und in noch geringerer Dosis wirksamen Pyrethroide lagert sich im selben Bereich wie DDT an, ihre Alkohol-Gruppe reicht aber tiefer in den Hohlraum.[31]

Resistenz[Bearbeiten]

Ernsthafte Probleme mit DDT-Resistenzen traten erstmals 1946 bei Stallfliegen in Nordschweden auf. Als Gegenmaßnahme erhöhte die Geigy AG den Wirkstoffgehalt ihres Gesarol-Spritzmittels von 5 auf zunächst 10 %, einige Jahre später auf 50 %. Als 1949 an vielen Orten in der Schweiz resistente Fliegen auftraten, gingen die DDT-Umsätze spürbar zurück und Geigy beschleunigte die Entwicklung des als DDT-Nachfolger vorgesehenen Diazinon.[11][32]

Bereits 1953 waren der WHO Fälle von DDT-Resistenz bei malariaübertragenden Anopheles-Mücken bekannt. Um die Zeit für die Resistenzbildung zu verringern sollte DDT während der „Angriffsphase“ des Global Eradication of Malaria Program jeweils nur einige Jahre eingesetzt werden. Dennoch traten damals unter anderem in El Salvador, Mexiko und Teilen Indiens resistente Anopheles-Mücken auf, wobei auch dem DDT-Einsatz in der Landwirtschaft eine Mitschuld zugeschrieben wird.[33]

Die häufigste Form der Resistenz, die „knockdown resistance“ (kdr), führt zu einer etwa 14-fach höheren Verträglichkeit für DDT, Pyrethrine und Pyrethroide. Sie geht auf eine Mutation am para-Natriumkanal zurück, die mittlerweile bei vielen Insektenarten gefunden wurde. Die bei Pyrethroiden wichtige „Super-kdr“-Resistenz ist für DDT von geringer Bedeutung.[31]

Der Einsatz von DDT und Pyrethroiden in der Landwirtschaft führte selbst dort zum Auftreten resistenter Mücken, wo DDT nie zur Malariabekämpfung eingesetzt wurde. Nach einem Bericht des UNEP aus dem Jahre 2007 wiesen in Afrika bei Stichproben 64 % der Bestände des dort wichtigsten Malaria-Überträgers Anopheles gambiae DDT-Resistenz auf, etwa ein Drittel davon war hochresistent. Auch in Äthiopien und Indien ist die DDT-Resistenz weit verbreitet.[28]

Toxikologie[Bearbeiten]

Die akute Giftigkeit von DDT für Menschen und Säugetiere ist im Vergleich zu anderen Organochlorpestiziden gering. Die höchste in der Literatur berichtete DDT-Dosis beim Menschen betrug 285 mg/kg Körpergewicht und wurde überlebt.[2][12] Der LD50 bei Ratten (oral) liegt bei etwa 250–300 mg/kg Körpergewicht.[20] Eine akute Vergiftung äußert sich vor allem in neurotoxischen (nervlichen) Wirkungen wie Zungentaubheit, Schwindel, Zuckungen der Gesichtsmuskulatur bis hin zu Krampfanfällen und Lähmungen.

Die biologische Halbwertszeit, also die Zeitspanne, die der Körper benötigt, bis die Hälfte des aufgenommenen DDT wieder abgebaut oder ausgeschieden wurde, beträgt beim Menschen über ein Jahr. Vom Menschen wird p,p′-DDT hauptsächlich zu p,p′-DDE abgebaut. o,p′-DDT wird schneller ausgeschieden als p,p′-DDT.[13]

Beim Menschen konnte ein möglicher Zusammenhang zwischen der DDT-Belastung und verminderten Spermienzahlen nicht eindeutig belegt werden.[13]

Der Zusammenhang zwischen der DDT-Exposition und verschiedenen Krebsarten beim Menschen wurde in zahllosen Studien untersucht. Bisher gibt es keine überzeugenden Beweise dafür, dass DDT oder seine Derivate beim Menschen Krebs auslösen können. An Nagetieren konnte die kanzerogene Wirkung von technischem DDT, p,p′-DDT und p,p′-DDE zweifelsfrei nachgewiesen werden. Es ist noch unklar, inwieweit diese Ergebnisse auf den Menschen übertragbar sind.[12] Bei Langzeitstudien an Ratten, Mäusen und Hamstern bildeten sich die Tumore in Leber, Lunge und dem Lymphsystem, nicht jedoch in der Brust oder in den Geschlechtsorganen. Die kanzerogene Wirkung ist möglicherweise auf die hormonelle Wirksamkeit zurückzuführen.[13]

Eine gentoxische Wirkung beim Menschen konnte nicht eindeutig nachgewiesen werden. In einigen Studien wurden bei beruflich exponierten Personen Chromosomenaberrationen festgestellt. Sie waren jedoch auch anderen Pestiziden ausgesetzt und es ist unklar, ob weitere Risikofaktoren ausreichend berücksichtigt wurden. Laborversuche zur Feststellung einer gentoxischen Wirkung brachten widersprüchliche Ergebnisse.[12]

Eine Studie konnte einen Zusammenhang zwischen dem Auftreten vorzeitiger Wehentätigkeit bei 20 indischen Frauen und im Vergleich zur Kontrollgruppe erhöhten Konzentrationen von p,p′-DDE und p,p′-DDT in Blut und Plazentagewebe aufzeigen. Allerdings waren die Gehalte von Hexachlorbenzol, Lindan und Aldrin bei den Frauen mit vorzeitigen Wehen ebenfalls erhöht. Andere Untersuchungen lieferten Hinweise auf einen Zusammenhang zwischen erhöhten Konzentrationen von p,p′-DDT und dem Auftreten von Totgeburten oder zwischen der p,p′-DDE Belastung und einer verkürzten Stillperiode.[13] Erst 2014 konnte in einer Studie aufgezeigt werden, dass DDE möglicherweise an der Entstehung von Alzheimer beteiligt ist. Patienten mit Alzheimer hatten im Vergleich zu einer Kontrollgruppe einen 3,8-fach erhöhten DDE-Wert im Serum.[34]

Endokrine Wirkung[Bearbeiten]

DDT und einige seiner Abbauprodukte können als Endokrine Disruptoren wirken, also in Lebewesen ähnlich wie Hormone wirken oder natürliche Hormone hemmen.

Auf den Östrogen-Rezeptor wirkt DDT als Agonist, es lagert sich dort an und wirkt wie Östrogen. Die stärkste östrogene Wirkung hat o,p′-DDT, insbesondere das linksdrehende Enantiomer, gefolgt von o,p′-DDE. Die p,p′-Isomeren von DDT und DDE haben so gut wie keine östrogene Wirkung.

Am Androgenrezeptor verhindern DDT und seine Abbauprodukte die Anlagerung körpereigener Androgene, wirken aber selbst nicht androgen. Diese Wirkung als Androgen-Antagonist ist bei p,p′-DDE stärker ausgeprägt als bei p,p′-DDT und o,p′-DDT. Natürliche Hormone binden erheblich stärker (Faktor 103 bis 106) an Östrogen- und Androgenrezeptoren als DDT oder DDE.[13]

Die endokrine Wirkung von DDT und Derivaten gilt heute als Ursache von Reproduktionsstörungen unterschiedlicher Art, die bei Lebewesen aus verschiedenen Tierklassen auftraten. Die bekannteste davon ist die Eischalenverdünnung bei Vögeln.

Exposition des Menschen[Bearbeiten]

Bekämpfung des Kartoffelkäfers mit DDT-Stäubemittel, DDR 1953

In den westlichen Ländern wird DDT heute hauptsächlich über Lebensmittel tierischer Herkunft aufgenommen. Bis vor wenigen Jahren waren auch Rückstände von Pflanzenschutzmitteln in importierten Lebensmitteln eine mögliche Quelle.

In Deutschland fand man bei Untersuchungen Ende der 1990er-Jahre, dass im Blutserum p,p′-DDT und sein Abbauprodukt p,p′-DDE etwa im Verhältnis 1:9 vorkamen. Anfang der 1970er-Jahre war der DDT-Anteil im Serum höher, das Verhältnis lag bei bis zu 3:1. Ein im Vergleich zum DDE hoher DDT-Anteil im Blutserum deutet auf eine kurz zurückliegende Aufnahme hin, wie sie in Ländern der Dritten Welt noch vorkommen kann. Die o,p′-Isomere werden im Körper schneller abgebaut und machen nur 1 % des Gesamt-DDT im Blutserum aus.

Anfang der 1990er-Jahre betrug der mittlere p,p′-DDE-Gehalt des Serums in der Altersgruppe von 21–30 Jahren 1,5 µg/l, wogegen bei der Altersgruppe von 51–60 Jahren 3,3 µg/l gefunden wurden (alte Bundesländer).

Die mittlere Gesamt-DDT-Belastung der Muttermilch in (West-)Deutschland ging zwischen 1980 und 1994 von etwa 1910 µg/kg Fett auf 367 µg/kg Fett zurück. In den neuen Bundesländern lag sie hingegen 1990 noch bei etwa 2250 µg/kg Fett. In den USA fand man 1955 im Mittel noch 15 mg DDT/kg Fettgewebe, bis 1980 war dieser Wert auf 5 mg/kg gesunken. Ende der 1980er-Jahre waren die Fettgewebe-Konzentrationen in den USA, Kanada und Europa auf etwa 1 mg/kg zurückgegangen.

Bei Säuglingen unterscheiden sich die Gesamt-DDT-Gehalte nicht von denen der Erwachsenen. Kinder nehmen DDT-Isomere bereits über die Plazenta, später über die Muttermilch auf.

In Ländern, in denen DDT bis vor kurzem eingesetzt wurde oder heute noch wird, sind die DDT-Gehalte in Blut, Muttermilch und Fettgewebe deutlich höher. Besonders hoch war die Belastung bei Arbeitern in der DDT-Produktion. Mitte der 1960er-Jahre wurden bei ihnen Gesamt-DDT Gehalte zwischen 38 und 647 mg/kg Fettgewebe und etwa 350 bis 740 µg/kg Serum gefunden.[13]

Umweltverhalten und Ökotoxikologie[Bearbeiten]

Umweltverhalten[Bearbeiten]

Abbau von DDT zu DDE (durch Eliminierung von HCl, links) und zu DDD (durch reduktive Dechlorierung, rechts)

DDT wird in der Natur nur langsam abgebaut, zudem beginnt sein Abbau in der Regel mit der Umwandlung in die ebenfalls sehr langlebigen Verbindungen DDE und DDD.

Im Boden adsorbieren DDT, DDD und DDE stark an organischen Bodenbestandteilen und Tonmineralen. Sie gelangen daher kaum ins Grundwasser, können aber bei starken Niederschlägen mit abgespülter Erde in Gewässer eingetragen werden. Im Lauf der Jahre diffundieren sie auch in die Mikroporen des Bodens, wo sie für einen mikrobiellen Abbau nicht verfügbar sind. DDT und seine Umwandlungsprodukte können von einer ganzen Reihe von Bakterien und Pilzen abgebaut werden. Wenn Sauerstoff zur Verfügung steht, entsteht im ersten Schritt vor allem DDE, unter reduzierenden Bedingungen überwiegt der Abbau zu DDD. Die Abbaugeschwindigkeit ist von der Aktivität des Bodenlebens abhängig, sie steigt bei höheren Temperaturen sowie guter Nährstoff- und Wasserversorgung. Aus dem Boden können DDT und seine Umwandlungsprodukte sich in die Atmosphäre verflüchtigen, was durch hohe Temperaturen und Überschwemmung des Bodens begünstigt wird. Beim Ermitteln der Halbwertszeit von DDT in Böden wurden früher alle Austragswege als „Abbau“ erfasst. Teilweise wurde nur das insektizid wirksame p,p′-DDT betrachtet, ohne die hohe Persistenz der Abbauprodukte zu berücksichtigen. In den Tropen „verschwindet“ ausgebrachtes DDT schneller aus dem Boden als in kühleren Klimaten. Bei einer in den 1980er-Jahren durchgeführten Untersuchung lag die Halbwertszeit – bezogen auf Gesamt-DDT – in tropischen und subtropischen Ländern bei 22 bis 365 Tagen. Im Vergleich dazu wurden in gemäßigten Klimazonen Halbwertszeiten von 837 bis 6087 Tagen (16,7 Jahre) gefunden.

In der Atmosphäre liegt DDT je zur Hälfte in der Gasphase und partikelgebunden vor. Das DDT in der Gasphase wird vor allem durch Hydroxyl-Radikale mit einer Halbwertszeit von etwa 37 Stunden abgebaut. Partikelgebundenes DDT unterliegt diesem Abbau nicht und kann in der Atmosphäre über große Entfernungen transportiert werden. Der größte Teil des atmosphärischen DDT wird vermutlich durch Niederschläge ausgewaschen.

An der Oberfläche von Gewässern kann DDE durch Photolyse innerhalb weniger Tage zersetzt werden, DDT und DDD werden auf diese Weise nur sehr langsam abgebaut. Ein biologischer Abbau findet im freien Wasser kaum statt. Durch Hydrolyse wird DDT zu DDE abgebaut; diese Reaktion wird durch basisches Milieu begünstigt.

Aufgrund des lipophilen Eigenschaften von DDT, DDE und DDD (log KOW: 6,36, 5,70 und 5,50[35]) reichern sich diese über die Nahrungskette im Fettgewebe von Mensch und Tier an (Bioakkumulation). Für Fische werden Biokonzentrationsfaktoren von 12.000 (Regenbogenforelle) bis 100.000 angegeben, für Muscheln 4.550 bis 690.000 und für Schnecken 36.000. Fische nehmen DDT sowohl direkt aus dem Wasser als auch mit der Nahrung auf. Wandernde Fischschwärme können DDT aus stark belasteten Gewässern in ursprünglich wenig belastete Regionen verschleppen.[12]

DDT ist eine der Verbindungen, die sich an die Oberfläche von im Ozean treibendem Kunststoff anlagert.[36] Im Pazifik hat sich ein Müllstrudel aus Kunststoffabfällen von der Größe Mitteleuropas gebildet. Im Oberflächenwasser dieses Müllstrudels kommen auf ein Kilogramm Plankton sechs Kilogramm Kunststoffmüll.[37]

Vögel[Bearbeiten]

DDT und sein Metabolit DDE reichern sich über die Nahrungskette stark an, die höchsten DDE-Kontaminationen wurden daher bei vogel- und fischfressenden Greifvögeln festgestellt.[38] Bei einigen Vogelarten führt DDE zu einer Eischalenverdünnung. Im Tierexperiment erwiesen sich Hühnervögel und Wachteln als unempfindlich gegen die durch DDT-Metaboliten verursachte Eierschalenverdünnung. Enten und Tauben waren mäßig, viele Greifvögel jedoch sehr empfindlich.

Von Vögeln wird o,p′-DDT rasch metabolisiert und ausgeschieden, während p,p′-DDT nur langsam zu DDE abgebaut wird.[13]

Wanderfalke mit Nestling

Ein großräumiger, katastrophaler Bestandsrückgang des Wanderfalken wurde 1961 in Großbritannien entdeckt. Bei einer Zählung im Jahr 1962 wurde ein Bestandsrückgang von 44 % für das ganze Land gegenüber dem mittleren Bestand der Jahre 1930–39 festgestellt.[39] Im Süden Englands war die Art völlig verschwunden, in Wales und in Nordengland war der Bestand stark zurückgegangen und nur in den Schottischen Highlands war der Bestandsrückgang relativ gering. Unabhängig davon waren ab 1951 gehäuft zerbrochene Eier in Wanderfalkennestern gefunden worden, was vorher praktisch unbekannt war. Nach der Entdeckung des Bestandseinbruches wurden ältere Eischalen des Wanderfalken aus Eiersammlungen in Museen und bei Sammlern untersucht und ein schlagartiger Rückgang der Eischalendicke um im Mittel etwa 20 % ab 1947 festgestellt. Ähnliche Verringerungen der Eischalendicke wurden in Großbritannien auch bei Sperber und Merlin gefunden.[40]

Katastrophale Bestandseinbrüche und ein erheblicher Rückgang der Eischalendicke nach 1950 wurden gleichzeitig oder nur wenig später in weiten Teilen der nördlichen Hemisphäre verzeichnet. In Europa starb der Wanderfalke in Dänemark, den Niederlanden, Belgien, Luxemburg und der DDR bis Ende der 1970er-Jahre aus, die Bestände in Skandinavien, der ehemaligen BRD, der Schweiz, Österreich und Polen gingen bis auf wenige Paare zurück. Die Baumbrüterpopulation Mittel- und Osteuropas starb vollständig aus. In den USA verschwand der Wanderfalke aus allen Bundesstaaten östlich der Rocky Mountains.

Der plötzliche Rückgang der Eischalendicke nach 1946 trat zu der Zeit auf, als DDT in der Land- und Forstwirtschaft erstmals großflächig angewendet wurde. Ende der 1960er-Jahre wurde festgestellt, dass der Gehalt des DDT-Metaboliten DDE in den Eiern mit der Eischalendicke negativ korreliert. Eine Abnahme der Eischalendicke um 17 % war mit einem DDE-Gehalt von 15–20 ppm DDE bezogen auf das Frischgewicht des Eiinhalts verbunden. Wanderfalkenpopulationen, deren durchschnittliche Eischalendicken um 17 % oder mehr verringert waren, gingen stark zurück oder starben aus.[41]

Bereits 1958 wurde berichtet, dass Weißkopfseeadler in den USA kaum noch Junge aufziehen würden. Ähnliche Effekte traten Anfang der 1970er-Jahre bei Kormoranen an den Großen Seen in Kanada auf. Hier war der Bestand auf 100 Brutpaare zurückgegangen. Die Eischalendicke war im Vergleich zu Eiern, die vor 1945 gesammelt worden waren, um mehr als 20 % verringert. Der durchschnittliche DDE-Gehalt der Kormoraneier lag 1972 bei 22,4 mg/kg Frischgewicht. Auch bei Sperbern auf den Britischen Inseln, Weißkopfseeadlern an den Großen Seen und Fischadlern in Südschweden konnten die Probleme bei der Jungenaufzucht auf DDT oder seine Abbauprodukte zurückgeführt werden. Anderen Umweltschadstoffen wie PCB, Quecksilber, Dioxinen, Chlordan und Dieldrin waren die Vögel zu jener Zeit ebenfalls ausgesetzt. Die jeweilige DDE-Belastung ergab bei der statistischen Auswertung der Ergebnisse stets die beste Erklärung für die Eierschalendicke bzw. den ausbleibenden Bruterfolg.

Über welchen Mechanismus der Rückgang der Eischalendicke zustande kommt, ist noch nicht zweifelsfrei geklärt. Diskutiert wird beispielsweise eine Störung der Calcium-Einlagerung in der Eischale über eine Hemmung der Calcium-ATPase und der Carboanhydrase. Die Synthese des Hormons Prostaglandin, das auch für den Hydrogencarbonat-Transport verantwortlich ist, wird ebenfalls beeinflusst. Es gibt Hinweise, dass DDE ähnlich wie Progesteron (progesteron-mimetisch) den Eisprung hemmt und eine Erhöhung des Avidingehalts im Eileiter bewirkt.

Im Süden Kaliforniens waren in den 1950er- und 1960er-Jahren DDT-haltige Abwässer einer Fabrik ins Meer gelangt. Bei den dort lebenden Westmöwen (L. occidentalis) war das Geschlechterverhältnis hin zu den Weibchen verschoben. Der Anteil von Weibchen-Weibchen-Paaren war mit 10 % der Brutpaare deutlich erhöht. In den Nestern lagen ungewöhnlich viele Eier, die aber zum Teil nicht befruchtet worden waren. Hierfür wurde eine Feminisierung männlicher Vogel-Embryonen durch die östrogene Wirkung von o,p′-DDT verantwortlich gemacht.

Die Gesamt-DDT-Gehalte im Gewebe von Vögeln gingen zwischen den frühen 1970ern und den 1980ern auf der Nordhalbkugel zurück, der relative Anteil des Hauptmetaboliten DDE nahm dabei zu. Seit Anfang der 1990er-Jahre bleiben die DDT-Gehalte mehr oder weniger konstant, allerdings auf niedrigem Niveau.[13]

Säugetiere[Bearbeiten]

Junge Kegelrobben aus Nordsee und Nordatlantik hatten in den 1980er-Jahren 1,2–2,5 mg Gesamt-DDT/kg Fett. Für Kegelrobben-Junge aus der Ostsee lagen die Gesamt-DDT-Konzentrationen etwa um den Faktor 20 höher. Die Anzahl der Robben an der Ostsee ging zurück, die Neugeborenen hatten eine höhere Sterblichkeit, es traten Läsionen des Schädelknochens und Verschluss des Uterus auf. Alle Kegelrobben waren zugleich mit PCB belastet, die PCB-Konzentrationen waren etwa doppelt so hoch wie die DDT-Konzentrationen.

Beim Florida-Panther konnten in den 1990ern Reproduktionsstörungen (verringerte Spermienzahl, Spermienanomalien, Hodenhochstand) auf seine hohe Exposition mit dem antiandrogen wirksamen p,p′-DDE (5–60 mg/kg Leber) zurückgeführt werden. Ein Einfluss östrogener Substanzen wie PCB (7–26 mg/kg Leber) sowie von Inzucht konnte nicht ausgeschlossen werden.[13] Die LD50 für Säugetiere liegt im Bereich von 0,1–0,5 g DDT/kg Körpergewicht. Bei Versuchen zur Langzeitwirkung von DDT traten beim Kaninchen schädliche Wirkungen bei einer täglichen Aufnahme von mehr als 0,184 mg DDT/kg KG (NOAEL) auf.

Andere Tierklassen[Bearbeiten]

Bei Reptilien kann die Geschlechtsdetermination durch äußere Faktoren, teilweise auch durch endokrin wirksame Substanzen, beeinflusst werden.

Hechtalligator

In den Lake Apopka in Florida gelangten nach einem Chemieunfall 1980 Dicofol, DDT, DDD, DDE und Schwefelsäure. Innerhalb der folgenden vier Jahre ging dort der Bestand des Hechtalligators (Alligator mississippiensis) um 90 % zurück. Die Sterblichkeit der erwachsenen Tiere war deutlich, die der Jungtiere drastisch höher als bei einer Kontrollpopulation. Das Geschlechterverhältnis war zu den Weibchen hin verschoben und man fand Veränderungen im Hormonspiegel und an den Geschlechtsorganen der Alligatoren. Im Labor konnte mit DDE an Eiern des Hechtalligators eine geschlechtliche Umwandlung oder Intersexualität ausgelöst werden. Bei Schnappschildkröten (Chelydra serpentina) in Kanada fand man einen reduzierten Sexualdimorphismus, der vermutlich mit der Belastung durch p,p′-DDE oder PCB im Zusammenhang steht.

Auch bei Amphibien und Krebstieren können Fremdstoffe zu endokrinen Störungen führen. Ob auch DDT und seine Derivate bei diesen Tierklassen eine solche Wirkung zeigen ist noch ungeklärt.

Fische können DDT nur langsam abbauen, bei ihnen wurden p,p′-DDE und p,p′-DDD als Metabolite nachgewiesen. Bei einigen Fischen (Ostsee-Kabeljau) war seit den 1970er-Jahren ein Rückgang der Belastung zu beobachten, bei anderen (Ostsee-Hering, Nordsee-Kliesche) ist kein Trend zu erkennen. Bei in-vivo-Untersuchungen wurden bei Fischen durch DDT und seine Derivate östrogene Wirkungen ausgelöst; diese Ergebnisse konnten in vitro bestätigt werden. Diese Effekte sind sehr stark von der jeweiligen Fischart und ihrem Entwicklungsstadium abhängig und schwer auf andere Arten übertragbar.

Bei Insekten gibt es neben der akuten Toxizität auch Hinweise auf endokrine Wirksamkeit. Bei Nymphen der Wanze Rhodius prolixus war nach Exposition mit DDT die Häutungsfrequenz erhöht, bei den Imagines verkürzte sich die Zeitdauer bis zur Eiablage. In vitro konnte bei dem Schmetterling Heliothis zea die kompetitive Bindung von DDT und Juvenilhormon an ein Fettkörperprotein gezeigt werden.[13]

Einzelnachweise[Bearbeiten]

  1. a b DDT. In: Römpp Online. Georg Thieme Verlag, abgerufen am 13. April 2014.
  2. a b c d e f g Eintrag zu DDT in der GESTIS-Stoffdatenbank des IFA, abgerufen am 4. Oktober 2007 (JavaScript erforderlich).
  3. a b Eintrag aus der CLP-Verordnung zu CAS-Nr. 50-29-3 in der GESTIS-Stoffdatenbank des IFA (JavaScript erforderlich)
  4. Datenblatt 4,4′-DDT bei Sigma-Aldrich, abgerufen am 24. März 2011 (PDF).
  5. Seit 1. Dezember 2012 ist für Stoffe ausschließlich die GHS-Gefahrstoffkennzeichnung zulässig. Bis zum 1. Juni 2015 dürfen noch die R-Sätze dieses Stoffes für die Einstufung von Gemischen herangezogen werden, anschließend ist die EU-Gefahrstoffkennzeichnung von rein historischem Interesse.
  6. Concern over excessive DDT use in Jiribam fields. 5. Mai 2008. Archiviert vom Original am 6. Dezember 2008. 
  7. Henk van den Berg, Sekretariat der Stockholmer Konvention: Global status of DDT and its alternatives for use in vector control to prevent disease (PDF; 288 kB) Stockholmer Konvention/United Nations Environment Programme. 23. Oktober 2008. Archiviert vom Original am 18. November 2010. Abgerufen am 22. November 2008.
  8. Lukas Straumann: Nützliche Schädlinge. Chronos Verlag, Zürich, 2005, S. 236–245, ISBN 3-0340-0695-0.
  9. Charles M. Wheeler: Control of Typhus in Italy 1943/1944 by Use of DDT. American Journal of Public Health, Feb. 1946, Vol. 36, S. 119–129; PMC 1626020 (freier Volltext).
  10. a b c d e f g h Thomas R. Dunlap: DDT: Scientists, Citizens and Public Policy. Princeton University Press, 1981, ISBN 0-691-04680-8.
  11. a b c d e f g h Christian Simon: DDT – Kulturgeschichte einer chemischen Verbindung. Christoph Merian Verlag, Basel, 1999, ISBN 3-85616-114-7.
  12. a b c d e f g U.S. Department of Health and Human Services, Agency for Toxic Substances and Disease Registry: Toxicological profile for DDT, DDE and DDD. (PDF; 4,2 MB), 2002.
  13. a b c d e f g h i j k l m n o Beratergremium für Altstoffe der Gesellschaft Deutscher Chemiker: DDT und Derivate – Modellstoffe zur Beschreibung endokriner Wirkungen mit Relevanz für die Reproduktion. BUA-Stoffbericht 216, S. Hirzel Verlag, August 1998, ISBN 3-7776-0961-7.
  14. Lukas Straumann: Nützliche Schädlinge. Chronos Verlag, Zürich, 2005, S. 288–296, ISBN 3-0340-0695-0.
  15. Gerfried Deschka, Die Desinfektion kleiner Insektensammlungen nach neueren Gesichtspunkten, Steyrer Entomologenrunde, Steyr 1987
  16. WHO gives indoor use of DDT a clean bill of health for controlling malaria. WHO, 2006
  17. Sweeney, Edmund M, Consolidated DDT hearing: hearing examiner's recommended findings, conclusions, and orders, Environmental Protection Agency, April 25 1972; (Auszüge) (vollständiges Dokument, 56 MB).
  18. Environmental Protection Agency: Consolidated DDT Hearings: Opinion and Order of Administrator, June 30, 1972 (PDF, 1,7 MB).
  19. Website der United States Environmental Protection Agency: DDT Regulatory History: A Brief Survey (to 1975).
  20. a b c Werner Perkow: „Wirksubstanzen der Pflanzenschutz- und Schädlingsbekämpfungsmittel“. 2. Auflage, Verlag Paul Parey.
  21. Greenpeace Österreich: Chlorpestizide und PCBs (PDF; 24 kB).
  22. Schadstoffe bei Kleinkindern in Housing Areas. (PDF; 291 kB)
  23. DDT in Einbauschränken. vom 27. Juni 1998.
  24. a b V.P. Sharma: DDT: The fallen angel (PDF; 74 kB). 2003, Current Science, 85, 11, 1532–1537.
  25. K. Gunasekaran, S. S. Sahu, P. Jambulingam, P. K. Das: DDT indoor residual spray, still an effective tool to control Anopheles fluviatilis-transmitted Plasmodium falciparum malaria in India. 2005, Tropical Medicine & International Health 10 (2), 160–168; doi:10.1111/j.1365-3156.2004.01369.x.
  26. POPs-Konvention (2004) (PDF; 220 kB).
  27. Provisional DDT register pursuant to paragraph 1 of part II of annex B of the Stockholm Convention online.
  28. a b c d United Nations Environment Programme: Report of the expert group on the assessment of the production and use of DDT and its alternatives for disease vector control (PDF; 85 kB). Third Meeting, Dakar, 30. April bis 4. Mai 2007.
  29. Arata Kochi: „Help save African babies as you are helping to save the environment.“ 15. September 2006.
  30. Forth, Henschler, Rummel: Allgemeine und spezielle Pharmakologie und Toxikologie. BI-Wiss.-Verl., 1992, ISBN 3411150262.
  31. a b T.G.E. Davies, L.M. Field, P.N.R. Usherwood, M.S. Williamson: DDT, Pyrethrins, Pyrethroids and Insect Sodium Channels. IUBMB Life 59(3), März 2007, S. 151-162.
  32. Lukas Straumann: Nützliche Schädlinge. Chronos Verlag, Zürich, 2005, S. 261–263, ISBN 3-0340-0695-0.
  33. G. Chapin, R. Wasserstrom: Agricultural production and malaria resurgence in Central America and India. Nature 293, 17. September 1981, S. 181-185.
  34. Jason R. Richardson, Ananya Roy, Stuart L. Shalat et. al.: Elevated Serum Pesticide Levels and Risk for Alzheimer Disease. JAMA Neurol., 27. Januar 2014. doi:10.1001/jamaneurol.2013.6030.
  35. Rene P. Schwarzenbach, Philip M. Gschwend, Dieter M. Imboden: Environmental Organic Chemistry. Wiley-Interscience, Hoboken, New Jersey 2003, ISBN 0-471-35750-2.
  36. Teuten et al., Phil. Trans. R. Soc. B (2009) Vol. 364, 2027-2045.
  37. Spiegel online vom 2. Februar 2008.
  38. z. B. B. Conrad: Zur Situation der Pestizidbelastung bei Greifvögeln und Eulen in der Bundesrepublik Deutschland. In: Greifvögel und Pestizide. Ökologie der Vögel 3, 1981, Sonderheft: S. 161–167.
  39. D. A. Ratcliffe: The status of the Peregrine in Great Britain. Bird Study 10; 1963: S. 56–90.
  40. D. A. Ratcliffe: Decrease in eggshell weight in certain birds of prey. Nature 215; 1967: S. 208–210.
  41. D. B. Peakall und L. F. Kiff: DDE contamination in Peregrines and American Kestrels and its effect on reproduction. In: Cade et al. 1988: S. 337–351.

Weblinks[Bearbeiten]

 Wiktionary: DDT – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen
 Commons: DDT – Sammlung von Bildern, Videos und Audiodateien
Gesundheitshinweis Bitte den Hinweis zu Gesundheitsthemen beachten!
Dies ist ein als lesenswert ausgezeichneter Artikel.
Dieser Artikel wurde am 11. Oktober 2007 in dieser Version in die Liste der lesenswerten Artikel aufgenommen.