Dichroismus

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Icon tools.svg
Dieser Artikel wurde den Mitarbeitern der Redaktion Physik zur Qualitätssicherung aufgetragen. Wenn Du Dich mit dem Thema auskennst, bist Du herzlich eingeladen, Dich an der Prüfung und möglichen Verbesserung des Artikels zu beteiligen. Der Meinungsaustausch darüber findet derzeit nicht auf der Artikeldiskussionsseite, sondern auf der Qualitätssicherungs-Seite der Physik statt.
Dieser Artikel stellt von der Polarisation abhängige Absorption dar. Für Bauteile mit einer von der Wellenlänge abhängenden Reflektivität siehe Dichroitischer Spiegel
Im Artikel ist eine Einteilung der unterschiedlichen Formen des Dichroismus nur in Ansätzen vorhanden. Weiterhin fehlen Erklärungen zu Ursachen, Anwendungsbereichen sowie Angaben zu fremd- und selbstinduziertem Dichroismus. Dieser Artikel bedarf einer Überarbeitung. Näheres ist auf der Diskussionsseite angegeben. Hilf mit, ihn zu verbessern, und entferne anschließend diese Markierung.

Als Dichroismus (Zweifarbigkeit, abgeleitet vom griechischen Wort dichroos für „zweifarbig“) wird in der Optik die Eigenschaft von bestimmten Materialien bezeichnet, Licht in Abhängigkeit von der Polarisation unterschiedlich stark zu absorbieren und wirkt sich auch auf das Reflexionsverhalten der Materialien aus.

Weiterhin gibt es noch röntgenspektroskopische Effekte, die auf der Kopplung von (Röntgen-)Photonen an bestimmte Elektronenorbitale beruhen und unter dem Begriff Röntgendichroismus zusammengefasst werden.

Beschreibung[Bearbeiten]

Einige Materialien (hauptsächlich Kristalle) haben eine oder mehrere ausgezeichnete optische Achsen. Bei optisch einachsigen Materialien wird einfallendes Licht in Abhängigkeit seiner Polarisation (immer bezogen auf den Vektor der elektrischen Feldstärke) in zwei Teilstrahlen aufgespalten: dem ordentlichen und dem außerordentlichen Strahl. Zeigt das Material unterschiedliche Absorptionsverhalten bezüglich dieser Achsen, das heißt wird der ordentliche stärker bzw. schwächer absorbiert als der außerordentliche Strahl, spricht man von einem dichroitischen Kristall. Bei einem entsprechend dicken Kristall wird daher einer der beiden Teilstrahlen (komplett) absorbiert und nur der andere transmittiert. Der Effekt ist aber stark wellenlängenspezifisch und tritt nur in einem schmalen Spektralbereich auf, das heißt, bei einer anderen Wellenlänge des Lichts kann der Effekt der Absorption nicht auftreten (man spricht dann von Doppelbrechung) oder sich sogar umkehren. In der Regel sind dichroitische Kristalle doppelbrechend und doppelbrechende Körper dichroitisch. Ausnahmen bestehen beim Vorliegen ganz bestimmter Randbedingungen (z. B. Einschränkungen des Spektralbereichs).[1] Betrachtet man „normales“, d. h. unpolarisiertes, Weißlicht des gesamten sichtbaren Spektrums, so führt die polarisationsabhängige Absorption von dichroitischen Materialien zu Schwächung bestimmter Spektralbereiche. Diese Änderung ist dann als Änderung der Lichtfarbe wahrnehmbar. Besonders deutlich wird der Dichroismus, wenn man linear polarisiertes Licht auf einen optisch einachsigen Kristall mit den zwei Resonanz- bzw. Eigenfrequenzen (Extremfarben) im sichtbaren Spektralbereich einstrahlt und das durchfallende Licht betrachtet. Ändert man nun die Polarisationsrichtung, so werden die Extremfarben sichtbar wenn die Polarisation senkrecht bzw. parallel zur optischen Achse des Kristalls liegt. Für eine Polarisation dazwischen treten Mischfarben aus diesen beiden Farben auf, weswegen in der Mineralogie häufig allgemein von Pleochroismus gesprochen wird. Hinsichtlich der tatsächlichen Beobachtung ist diese Begriffswahl gerechtfertigt.[2]

Ein komplexeres Absorptionsverhalten liegt bei optisch mehrachsigen Kristallen vor, wobei ein Einkristall höchstens zwei optische Achsen haben kann und mehr nur durch aneinanderkitten von vielen Einkristallen zustande kommen kann (polykristallines Material). Optisch zweiachsige Kristalle erzeugen zwei außerordentliche Strahlen, sie zeigen den Trichroismus (Dreifarbigkeit). Analog zeigen mehrachsige Polykristalle den Pleochroismus (Mehrfarbigkeit) mit vielen Farben.

Grad des Dichroismus[Bearbeiten]

Der Grad des Dichroismus D wird bestimmt durch das Verhältnis der Differenz der Absorptionskoeffizienten für die parallele bzw. senkrechte Polarisation (K_{\parallel} bzw. K_{\perp}).[3]

D = \frac{K_{\parallel}-K_{\perp}}{K_{\parallel}+K_{\perp}}

Linearer und zirkularer Dichroismus[Bearbeiten]

Beim Dichroismus wird hinsichtlich der Art der Polarisation des einfallenden Lichts unterschieden.

Es gibt den linearen Dichroismus, der das Phänomen bezeichnet, dass bei linear polarisiertem Licht in Abhängigkeit von der Wellenlänge entweder der außerordentliche Strahl stärker absorbiert wird als der ordentliche, oder umgekehrt. Dieser Effekt wurde Anfang des 19. Jh. erstmals bei Einkristallen des Schmucksteins Turmalin gefunden.[3]

Weiterhin gibt es analog zur zirkularen Doppelbrechung auch den Effekt des zirkularen Dichroismus (auch Zirkulardichroismus genannt), der das unterschiedliche Absorptionsverhalten rechts- und linksdrehend polarisierter Strahlung in einem optisch aktivem Material beschreibt. Dieser Effekt wurde erstmals 1896 durch Aimé Auguste Cotton (1869–1951) beschrieben, vgl. Cotton-Effekt.[3]

Linearer und zirkularer, magnetischer Dichroismus[Bearbeiten]

Dieser Artikel oder Abschnitt bedarf einer Überarbeitung. Näheres ist auf der Vermutlich liegt die Ursache im Zeeman-Effekt. Entsprechende Angaben sollten ergänzt werden angegeben. Hilf mit, ihn zu verbessern, und entferne anschließend diese Markierung.
Dieser Artikel oder nachfolgende Abschnitt ist nicht hinreichend mit Belegen (beispielsweise Einzelnachweisen) ausgestattet. Die fraglichen Angaben werden daher möglicherweise demnächst entfernt. Bitte hilf der Wikipedia, indem du die Angaben recherchierst und gute Belege einfügst. Näheres ist eventuell auf der Diskussionsseite oder in der Versionsgeschichte angegeben. Bitte entferne zuletzt diese Warnmarkierung.

Analog zu magnetooptischen Effekten der Doppelbrechung kann auch der Dichroismus bestimmter Materialien – also die Änderung der Intensität oder der Polarisationszustand des Lichts beim Durchgang durch das Material – durch magnetische Felder beeinflusst werden (magnetisch induzierter Dichroismus). Hierbei wird zwischen dem linearen, magnetischen Dichroismus (selten auch magnetischer Lineardichroismus, engl. magnetic linear dichroism, MLD). und dem zirkularen, magnetischen Dichroismus unterschieden.[4]

Der magnetische zirkulare Dichroismus (auch magnetische Zirkulardichroismus oder zirkularer magnetischer Dichroismus genannt, engl. magnetic circular dichroism, MCD) tritt bei magnetischen oder magnetisierten Materialien auf als eine Folge der unterschiedlichen Spinbesetzung gewisser Orbitale. Zirkularpolarisiertes Licht versetzt bevorzugt Elektronen in gewissen Orbitalen, die durch die Spin-Bahn-Kopplung unterschiedliche Besetzungsdichte aufweisen.

Dabei liegt die Magnetisierung parallel zur Ausbreitungsrichtung des Lichts, das zirkular polarisiert ist. Man unterscheidet zwischen einer polaren und einer longitudinalen Geometrie. Bei der polaren Geometrie liegt die Magnetisierung senkrecht zur Oberfläche, bei der longitudinalen liegt die Magnetisierung parallel zur Oberfläche in der Einfallsebene. Hier wird die unterschiedliche Absorption für die beiden Polarisationsrichtungen ausgenutzt. Diese ist proportional zum Imaginärteil der Brechzahl. Der gemessene Effekt entspricht somit:

\mathrm{Im}(n_{+} - n_{-})=\mathrm{Im}\left(\sqrt{\varepsilon_{xx} + \mathrm{i}\,\varepsilon_{xy}} - \sqrt{\varepsilon_{xx} - \mathrm{i}\,\varepsilon_{xy}}\right) \approx \mathrm{Re}\left(\frac{\varepsilon_{xy}}{\sqrt{\varepsilon_{xx}}}\right)

Beide Formen der magnetischen Dichroismus treten sowohl im sichtbaren Spektrum als auch im Röntgenbereich auf (Röntgendichroismus). Oft findet man daher auch Bezeichnungen speziell für die Röntgendichroismus: X-ray magnetic circular dichroism (XMCD, dt. ‚zirkularer, magnetischer Röntgendichroismus‘; auch magnetic x-ray circular dichroism, MXCD, genannt) und den weniger starken X-ray magnetic linear dichroism (XMLD, dt. ‚linearer, magnetischer Röntgendichroismus‘). Besonders interessant ist MCD im weichen Röntgenbereich (engl. (soft) X-ray magnetic circular dichroism, (S)X-MCD), wo die unbesetzte Valenzband-Elektronenstruktur spinaufgelöst gemessen werden kann.

Anwendung und Materialien[Bearbeiten]

Anwendung finden dichroitische Materialien beispielsweise als dichroitischer Polarisator im sichtbaren Bereich des elektromagnetischen Spektrums. Hier können einfache Drahtgitterpolarisatoren nicht mehr eingesetzt werden, denn mit geringer werdender Wellenlänge wird auch der erforderliche Gitterabstand geringer, welcher schon im Bereich des nahen Infrarot nur noch schwer zu realisieren ist. Im sichtbaren Bereich sind Strukturen in der Größenordnung von Molekülen notwendig. Dem US-amerikanischen Physiker Edwin Herbert Land (1909–1991) gelang 1932 erstmals die Herstellung von dichroitischen Folien. Da zu richtete er die länglichen Kohlenwasserstoffmoleküle in Polyvinylalkohol durch Erhitzung und Dehnung des Materials entsprechend aus. Solche Polarisationsfolien (Polaroidfilter oder Polaroidfolie genannt) werden sehr häufig eingesetzt und sind vergleichsweise günstig.[5] Sie können vergleichsweise großflächig hergestellt werden und erreichen einen Polarisationsgrad von mehr als 99 %.[3] Ihre Qualität (z. B. hinsichtlich des erreichbaren Polarisations- oder Transmissionsgrades) liegt jedoch unter der von anderen Polarisatoren. Des Weiteren zeigen sie Nachteile beim Anwendungen mit hohen Lichtleistungen. Wie beschrieben wird die Polarisation durch Absorption im Material erreicht, dies führt zu einer Erwärmung und kann negative Einflüsse auf die Eigenschaften des Polarisators haben, oder ihn im Extremfall sogar zerstören.

Es gibt aber auch Körper aus mehreren Materialien, die dichroitisches Verhalten zeigen. So können Nadeln aus schwefelsaurem Jodchinin (Herapathit) in Zellulose eingebettet und als dichroitischer Polarisator (Polarisationsfolie) genutzt werden.[1] In gleicher Weise kommen auch dichroitischen Farbstoffe in Kunststofffolien zum Einsatz. Die dazu notwendige einheitliche Ausrichtung der Farbstoffmoleküle wird beispielsweise durch elektrische oder magnetische Felder erreicht.[6]

In der Mineralogie findet der Dichroismus Verwendung bei der Charakterisierung von Mineralien (siehe auch PleochroismusMehrfarbigkeit). Dazu wird unter anderem ein sogenanntes Dichroskop eingesetzt. Ein typisches dichroitisches Material sind Turmaline, beispielsweise der grüne Tumalin (Verdelith). So wird bei der Transmission von natürlichem Licht durch eine ca. 1 mm dicke Platte aus Verdelith der ordentliche Strahl praktisch vollständig absorbiert, der außerordentliche Strahl wird hingegen nur geschwächt[6]

In der Analytischen Chemie kann der Dichroismus zur Strukturanalyse von optisch aktiven chiralen Molekülen eingesetzt werden (siehe auch Circulardichroismus).

Literatur[Bearbeiten]

  •  Herbert Daniel: Physik: Optik, Thermodynamik, Quanten. Walter de Gruyter, 1998, ISBN 9783110146301, S. 192.
  •  Ludwig Bergmann, Heinz Niedrig, Clemens Schaefer: Optik: Wellen- Und Teilchenoptik. Walter de Gruyter, 24. August 2004, ISBN 9783110170818, S. 557–559.

Weblinks[Bearbeiten]

Einzelnachweise[Bearbeiten]

  1. a b  Herbert Daniel: Physik: Optik, Thermodynamik, Quanten. Walter de Gruyter, 1998, ISBN 9783110146301, S. 192.
  2.  Ludwig Bergmann, Heinz Niedrig, Clemens Schaefer: Optik: Wellen- Und Teilchenoptik. Walter de Gruyter, 24. August 2004, ISBN 9783110170818, S. 558.
  3. a b c d  Manfred von Ardenne: Effekte der Physik und ihre Anwendungen. Harri Deutsch Verlag, 1. September 2005, ISBN 9783817116829, S. 777-778.
  4.  W. Roy Mason: Magnetic Linear Dichroism Spectroscopy. In: A practical guide to magnetic circular dichroism spectroscopy. Wiley-Interscience, 2007, ISBN 9780470069783, S. 188 ff (eingeschränkte Vorschau in der Google-Buchsuche).
  5.  Rainer Dohlus: Photonik. Oldenbourg Wissenschaftsverlag, ISBN 9783486588804.
  6. a b  Ekbert Hering, Rolf Martin, Martin Stohrer: Physik für Ingenieure. Springer, 2008, ISBN 9783540718550, S. 584.