Dicyanoethin

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Strukturformel
Struktur von Dicyanoethin
Allgemeines
Name Dicyanoethin
Andere Namen
  • Butindinitril
  • Dicyanacetylen
  • Kohlenstoffsubnitrid
Summenformel C4N2
CAS-Nummer 1071-98-3
Kurzbeschreibung

farblose Flüssigkeit[1]

Eigenschaften
Molare Masse 76,06 g·mol−1
Aggregatzustand

flüssig

Dichte

0,97 g·cm−3[1]

Schmelzpunkt

20,5 °C[1]

Siedepunkt

76,5 °C[2]

Dampfdruck

140 Torr (22,8 °C)[2]

Löslichkeit

löslich in allen organischen Lösungsmitteln[1]

Brechungsindex

1,4647 (25 °C)[3]

Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung [4]
keine Einstufung verfügbar
H- und P-Sätze H: siehe oben
P: siehe oben
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen. Brechungsindex: Na-D-Linie, 20 °C

Vorlage:Infobox Chemikalie/Summenformelsuche vorhanden

Dicyanoethin (Dicyanacetylen, Butindinitril) ist eine chemische Verbindung, die nur aus Kohlenstoff und Stickstoff zusammengesetzt ist. Als das Nitril der Acetylendicarbonsäure kann die Verbindung als organischer Stoff angesehen werden.

Vorkommen[Bearbeiten]

Natürliche Vorkommen an Dicyanoethin wurden auf dem Saturnmond Titan nachgewiesen.[5]

Darstellung und Gewinnung[Bearbeiten]

Eine frühe Herstellmethode geht vom Acetylendicarbonsäuredimethylester aus, der zunächst mit Ammoniakwasser in das Säureamid überführt wird. Eine Dehydratisierung mittels Phosphorpentoxid ergibt die Zielverbindung.[6][2]

Eigenschaften[Bearbeiten]

Physikalische Eigenschaften[Bearbeiten]

Dicyanoethin ist eine klare, farblose Flüssigkeit, die auf Grund des Schmelzpunktes bei 20,5 °C unterhalb von Raumtemperatur zu einem farblosen Feststoff erstarrt. Der Normaldrucksiedepunkt liegt bei 76,5 °C. Die Sublimationsdruckfunktion ergibt sich nach August entsprechend \lg(P) = \frac{-A}{T}+B (P in Torr, T in K) mit A = 2312 und B = 10,0115 im Temperaturbereich von −10 °C bis 20 °C.[2] Die Dampfdruckfunktion ergibt sich nach \lg(P) = \frac{-A}{T^2}-\frac{B}{T}+C (P in Pa, T in K) mit A = 51707, B = 1093,4 und C = 6,4308 im Temperaturbereich von 22 °C bis 76 °C.[2] Aus den Sublimations- und Dampfdruckfunktionen lassen sich eine molare Sublimationsenthalpie von 44,28 kJ·mol−1, eine molare Verdampfungsenthalpie von 28,78 kJ·mol−1 und eine molare Schmelzenthalpie von 15,49 kJ·mol−1 ableiten.[2]

Chemische Eigenschaften[Bearbeiten]

Dicyanoethin ist sehr reaktionsfreudig. Als eines der stärksten bekannten Dienophile ist es in der Lage, Diels-Alder-Reaktionen mit äußerst reaktionsträgen Substanzen wie Durol (1,2,4,5-Tetramethylbenzol) einzugehen. Bei seiner Verbrennung mit Sauerstoff treten Temperaturen bei einem Druck von 1 atm bis zu 5260 K, bei 40 atm bis 5750 K auf.[7] Die Oxidation von Dicyanoethin mit Ozon bei 40 atm erreicht Temperaturen von 6100 K[7] und bringt somit die heißeste zur Zeit (2012) bekannte auf einer chemischen Reaktion beruhende Flamme hervor.

Verwendung[Bearbeiten]

Dicyanoethin wird in der organischen Synthese und als Treibstoffzusatz verwendet. Bei der Handhabung muss seine toxische und tränenreizende Wirkung sowie seine Explosionsfähigkeit beachtet werden.

Einzelnachweise[Bearbeiten]

  1. a b c d Römpp Online - Version 3.5, 2009, Georg Thieme Verlag, Stuttgart.
  2. a b c d e f Saggiomo, A. J.: The Dinitriles of Acetylenedicarboxylic and Polyacetylenedicarboxylic Acids. I. Dicyanoacetylene and Dicyanodiacetylene in J. Org. Chem. 22 (1957) 1171-1175, doi:10.1021/jo01361a009.
  3. David R. Lide (Ed.): CRC Handbook of Chemistry and Physics. 90th Edition (Internet Version: 2010), CRC Press/Taylor and Francis, Boca Raton, FL, Physical Constants of Organic Compounds, S. 3-84.
  4. Diese Substanz wurde in Bezug auf ihre Gefährlichkeit entweder noch nicht eingestuft oder eine verlässliche und zitierfähige Quelle hierzu wurde noch nicht gefunden.
  5. R.E. Samuelson et al.: C4N2 ice in Titan's north polar stratosphere. Planetary and Space Science. 45/8/1977. S. 941–8. doi:10.1016/S0032-0633(97)00088-3.
  6. Moureu, C.; Bongrand, J.C.: Bull. Soc. Chem. (V) 846 (1909).
  7. a b Kirshenbaum, A.D.; Grosse, A.V.: The Combustion of Carbon Subnitride, C4N2, and a Chemical Method for the Production of Continuous Temperatures in the Range of 5000-6000°K. in J. Am. Chem. Soc. 78 (1956) 2020, doi:10.1021/ja01590a075.