Drei-Wege-Katalysator

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Der Drei-Wege-Katalysator ist ein Fahrzeugkatalysator mit Lambdaregelung für die Abgasnachbehandlung in Fahrzeugen mit Ottomotor, bei der Kohlenstoffmonoxid (CO), Stickoxide (NOx) und unverbrannte Kohlenwasserstoffe (HC) zu Kohlenstoffdioxid (CO2), Stickstoff (N2) und Wasser (H2O) umgewandelt werden. Aus der gleichzeitigen Umwandlung der drei Luftschadstoffe resultiert die Namensgebung.

Um einen hohen Umwandlungsgrad der Schadstoffe zu gewährleisten, muss mit Hilfe eines Regelkreises mit Lambdasonde das Verbrennungsluftverhältnis (Luft-Kraftstoff-Verhältnis bzw. die „Luftzahl“ Lambda \lambda) in einem engen Bereich um \lambda = 1, das sogenannte Lambdafenster, gehalten werden. Der geregelte Drei-Wege-Katalysator führt über 90 Prozent der Schadstoffe in ungefährliche Bestandteile über und reduziert so erheblich die Schadstoffemissionen des Verbrennungsmotors.[1]

Geschichte[Bearbeiten]

Eugene Houdry entwickelte den ersten Oxidationskatalysator und erhielt 1956 ein Patent dafür. Allerdings kam der Katalysator nicht zum Einsatz, da dieser durch den Oktanzahlverbesserer Bleitetraethyl schnell unwirksam wurde. Die Einführung des Drei-Wege-Katalysator ist eng mit den Anforderungen der Emissionsgesetzgebung verbunden. Neben der technischen Herausforderung der Entwicklung eines Katalysators, der gleichzeitig alle Schadkomponenten aus dem Abgas entfernt waren infrastrukturelle Maßnahmen wie die Eliminierung von Bleitetraethyl aus dem Ottokraftstoff notwendig, da es als Katalysatorgift wirkt. Außerdem war eine Reduktion des Gehalts an Schwefel­verbindungen im Kraftstoff wünschenswert.

Um die strengeren Abgasvorschriften der US-amerikanischen Environmental Protection Agency zu erreichen, wurden Fahrzeuge zunächst mit Zwei-Wege-Oxidationskatalysatoren ausgestattet, die zwar Kohlenstoffmonoxid und unverbrannte Kohlenwasserstoffe zu Kohlenstoffdioxid und Wasser umsetzten, Stickoxide jedoch nicht aus dem Abgas entfernten. Die erste flächendeckende Einführung erfolgte 1975 auf dem US-Markt. Der Durchbruch gelang schließlich John J. Mooney und Carl D. Keith im Jahr 1981 mit der Entwicklung des Drei-Wege-Katalysators.[2]

Wirkung[Bearbeiten]

Die Schadstoffe Kohlenstoffmonoxid, unverbrannte Kohlenwasserstoffe und Stickoxide werden nach folgenden Gleichungen aus dem Abgas entfernt:

\mathrm{2\ CO\ +\ O_2 \longrightarrow \ 2\ CO_2}
\mathrm{ C_mH_n\ +\ (m+n/4) \ O_2 \longrightarrow \ m\ CO_2\ +\ n/2 \ H_2O}
\mathrm{2\ NO\ +\ 2\ CO \longrightarrow \ N_2\ +\ 2\ CO_2}

Bei einer Abweichung vom stöchiometrischen Luft-Kraftstoff-Verhältnis (\lambda = 1) hin zu „magerem“ Gemisch (Luftüberschuss, \lambda > 1) werden nicht alle Stickoxide abgebaut, da die benötigten Reduktionsmittel schon vorher oxidiert werden. Bei „fettem“ Gemisch (Luftmangel, \lambda < 1) werden nicht alle Kohlenwasserstoffe und Kohlenstoffmonoxid abgebaut. Bei älteren Modellen wurde im fetten Bereich außerdem auf dem Katalysator absorbiertes Sulfat zu Schwefelwasserstoff reduziert und verursachte einen unangenehmen Geruch nach faulen Eiern.

Durch eine weitere Nebenreaktion kann im Katalysator Ammoniak gebildet werden. Kraftfahrzeuge mit Katalysator stoßen zwischen 20 und 50 mg Ammoniak je gefahrenem Kilometer aus. An stark befahrenen Straßen wurden Stickstoff-Zeiger wie die Gelbflechte (Xanthoria perietina) gefunden. In Deutschland gehen etwa 2 % der Ammoniak-Emissionen auf den Verkehr zurück.[3]

\mathrm{2\ NO\ +\ 5\ H_2\ \longrightarrow\ 2\ NH_3\ +\ 2\ H_2O}

Cer(IV)-oxid wird als Sauerstoffspeicherkomponente eingesetzt und stellt im fetten Bereich Sauerstoff gemäß folgender Gleichung zur Verfügung:

\mathrm{4 \ CeO_2\ +\ 2 \ CO\ \xrightarrow{{Pt, Pd}}\ 2 \ Ce_2O_3\ +\ 2 \ CO_2}

Im Sauerstoffüberschuss bildet sich wieder die Ausgangskomponente:

\mathrm{2 \ Ce_2O_3\ +\ O_2 \longrightarrow 4 \ CeO_2}

Herstellung[Bearbeiten]

Der Katalysator besteht aus einem keramischen Cordieritwabenkörper oder einem Metallträger, auf dem ein so genannter Washcoat aufgebracht wird. Der Washcoat besteht aus einer Mischung verschiedener Metalloxide. Die Metalloxide γ-Aluminiumoxid und Zirconiumdioxid stellen die Trägersubstanzen für die katalytisch aktiven Edelmetalle wie Platin, Palladium und Rhodium dar, Cerdioxid dient als Sauerstoffspeicherkomponente. Der Cordieritwabenkörper wird zum Einbau ins Fahrzeug in ein Blechgehäuse eingeschweißt, das mit einer Mineralfasermatte ausgekleidet ist. Metallträger können direkt in den Abgasstrang eingeschweißt werden.

Substrat[Bearbeiten]

Metallsubstrat-Katalysator

Als Substrat wird meist ein Keramik-Monolith mit einer Wabenstruktur verwendet. Das Cordierit-Keramiksubstrat, das in den meisten Katalysatoren verwendet wird, wurde von Rodney Bagley, Irwin Lachman und Ronald Lewis bei Corning Glass erfunden. Für diese Erfindung wurden sie in die US-amerikanische National Inventors Hall of Fame im Jahr 2002 aufgenommen.

Die Keramik-Monolithe haben in Abhängigkeit von der Kanalgröße eine geometrische Oberfläche von etwa ein bis fünf Quadratmeter pro Liter Katalysatorvolumen.

Washcoat[Bearbeiten]

Für die Herstellung des Katalysators wird zunächst eine saure Metalloxidsuspension hergestellt. Diese kann durch verschiedene Verfahren auf den Cordieritträger aufgebracht werden. Im einfachsten Fall wird der Wabenkörper in die Suspension getaucht. Die überschüssige Suspension wird ausgeblasen, der beschichtete Wabenkörper wird anschließend getrocknet und kalziniert. Die feinen Kanäle des Wabenkörpers enthalten dann eine dünne Schicht eines Metalloxidgemisches. Im nächsten Schritt erfolgt die Imprägnierung dieser Schicht mit Edelmetallsalzlösungen. Durch weiteres Trocknen und Kalzinieren werden die Edelmetalle auf dem Träger fixiert. Alternativ können die Edelmetalle bereits vor der Beschichtung des Cordieritträgers auf den Metalloxiden imprägniert werden. Abschließend wird der Katalysator in eine Mineralfasermatte eingepackt und in ein Blech eingeschweißt.

Technische Merkmale[Bearbeiten]

Wichtige technische Merkmale eines Drei-Wege-Katalysators sind neben der chemischen Zusammensetzung sein Light-off-Verhalten, der Druckverlust, das Thermoschockverhalten und die Washcoatadhäsion.

Literatur[Bearbeiten]

  • Bosch, Technische Unterrichtung: Abgastechnik für Ottomotoren, Robert Bosch GmbH KH/VDT, Stuttgart, Bosch Nr.: 1 987 722 020
  • Bosch, Technische Unterrichtung: Motronic, Kombiniertes Zünd- und Einspritzsystem für Ottomotoren, 2. Ausgabe, Robert Bosch GmbH KH/VDT, Stuttgart, September 1985, Bosch Nr.: 1 987 722 011
  • H. Bode: Materials Aspects in Automotive Catalytic Converters, Verlag Wiley-VCH (2002) ISBN 3527304916
  • R. M. Heck: Catalytic Air Pollution Control: Commercial Technology, 544 Seiten, Verlag John Wiley & Sons (2009), ISBN 0470275030

Weblinks[Bearbeiten]

Einzelnachweise[Bearbeiten]

  1. Bosch: Technische Unterrichtung Motronic, S. 41
  2. J. J. Mooney, C. D. Falk: Three-Way Conversion Catalysts: Effect of Closed-Loop Feed-Back Control and Other Parameters on Catalyst Efficiency, In: SAE Technical Papers, doi:10.4271/800462
  3. LUBW: Ammoniak in der Umwelt. Messprogramme und Messergebnisse 2003-2007. (PDF; 1,9 MB), Dezember 2008.