Druckluft

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Dieser Artikel behandelt Druckluft im Sinne komprimierter Luft. Für das Kulturzentrum, siehe Druckluft (Kulturzentrum)

Druckluft, umgangssprachlich auch Pressluft, bezeichnet komprimierte Luft. Sie dient verschiedenen Zwecken

Werden statt Luft spezielle Gase oder Gemische verwendet, spricht man von Druckgas.

Erzeugung[Bearbeiten]

2 Druckluftverdichter als Schraubenkompressoren mit integriertem Kältetrockner und 3000 Liter Druckluftspeicher

Entsprechend dem Verwendungszweck wird Luft mit Verdichtern (Kompressoren) auf einen höheren Druck gebracht und unterschiedlich behandelt. Der Energieaufwand beim Komprimieren ist beträchtlich, da viel Wärmeenergie entsteht, die meist ungenutzt bleibt. Druckluft galt deshalb als teurer Energieträger. Mittlerweile steht energiesparendere Technik zur Verfügung. Bei steigenden Energiepreisen und in Kombination mit Wärmerückgewinnung und regelmäßiger Leckagebehebung lassen sich die Kosten deutlich senken und es wird weniger CO2 produziert.

Zur Druckluft-Erzeugung werden hauptsächlich zwei unterschiedliche Systeme genutzt: Kolbenkompressor (meist 2-stufig) oder Schraubenverdichter. 3-stufige Kolbenkompressoren sorgen für Verdichtungsdrücke bis 3000 bar. Neben diesen Arten sind auch Rotationskompressoren und vereinzelt auch Membrankompressoren im Einsatz. Die Leistung eines Kompressors wird in l/min oder m³/h angegeben. Sie zeigt die Lieferleistung eines Kompressors auf.

Siehe auch: Druckluftanlage

Ölfreie Druckluft[Bearbeiten]

Druckluft aus allen Arten von ölgeschmierten verdichtenden Kompressoren (auch die ölfrei verdichtenden) enthält Öl, und ist deshalb ohne Aufbereitung / Filtration nicht für hochreine Anwendungen geeignet. Auch Druckluft aus ölfrei verdichtenden Kompressoren ist nicht völlig ölfrei, da die Luftqualität nach der Verdichtung, die in der Ansaugluft enthaltenden Öle und andere Kohlenwasserstoffe aus der Umgebung enthalten kann. Beispielsweise in der Nahrungsmittelindustrie, der medizinischen Anwendung, als Atemgas (Tauchen) oder bei Lackierbetrieben kann nur ölfreie Druckluft zum Einsatz kommen. Die Druckluftqualität wird gemäß der ISO 8573.1 klassifiziert. Die Definition von Öl beginnt bereits bei Kohlenwasserstoffen (C5+) und ist grundsätzlich im Gesamtzusammenhang von Dampf, Aerosole und Tröpfchen zu bestimmen. Dabei ist es nicht entscheidend, ob öl- oder wassergeschmiert, oder ölfrei verdichtet wird. Nur das Ergebnis zählt und das sollte unter allen Betriebsbedingungen eingehalten werden können. Atemluft wird mit entsprechend dafür geeigneten Kompressoren erzeugt. Die erzeugte Druckluft wird mit Filtern in Verbindung mit Öldampfadsorbern oder Katalysatoren gereinigt sowie mit geeigneten Messgeräten auf Ölfreiheit überwacht. Damit ist sichergestellt, dass die Qualitätsanforderung "ölfreie Druckluft" erreicht und dauerhaft sichergestellt ist.

Entfeuchtung [Bearbeiten]

Wird atmosphärische Luft komprimiert, steigt mit dem Partialdruck der als Dampf enthaltenen Luftfeuchte auch die Taupunkt­temperatur an. Wegen der gleichzeitigen Temperaturerhöhung sinkt dabei die relative Feuchte ab.[1] Kühlt die Druckluft unter ihren neuen, den Drucktaupunkt ab, so kann die Feuchtigkeit kondensieren. Deshalb wird Druckluft oft schon sofort nach der Kompression mit Kältetrocknern entfeuchtet. Dabei wird ein neuer Taupunkt eingestellt, der unter der Lagerungs- und Transporttemperatur liegt. Je nach Größe und Art der Anlage kommen auch hygroskopische Materialien für die Trocknung zum Einsatz.

Um den (Druck-)Taupunkt komprimierter Luft sprachlich vom Taupunkt der unkomprimierten Luft abzugrenzen wird letzterer auch atmosphärischer Taupunkt genannt.

Dadurch kann die Druckluft auch bei tieferen Umgebungstemperaturen eingesetzt werden, ohne dass in den Druckleitungen oder Transportbehältern Wasser kondensiert.

Druckluftverteilung[Bearbeiten]

Neben der Drucklufterzeugung, der Druckluftspeicherung, der Druckluftaufbereitung und der Druckluftnutzung, ist auch die Druckluftverteilung ein sehr wichtiger Bestandteil in der Druckluftanlage. Technisch sicherlich weniger anspruchsvoll und in vielen Installationen oft vernachlässigt, kann eine unsachgemäße Planung und Ausführung der Druckluftverteilung jedoch enorme Betriebskosten verursachen.

Verluste[Bearbeiten]

Direkte Verluste können alle Undichtigkeiten sein, bei denen Druckluft auf dem Weg von der Erzeugung bis hin zu der Nutzung aus der Druckluftrohrleitung oder den installierten Anlagen und Geräten ungenutzt entweicht. Noch heute werden bei der Berechnung für den Druckluftbedarf ca. 10 % an Verlusten mit einkalkuliert. Wenn alle Undichtheiten beseitigt werden, kann die Laufzeit der Kompressoren reduziert oder muss der Beistellkompressor nur noch selten oder gar nicht mehr eingesetzt werden.

Indirekte Verluste ergeben sich durch eine falsch geplante und dimensionierte Druckluftrohrleitung. Lange Stichleitungen werden installiert, obwohl eine Ringleitung an sich besser wäre. Kleine Durchmesser werden ausgewählt, obwohl sich die höhere Investition für einen größeren Durchmesser im Betrieb sehr schnell amortisiert. Die indirekten Verluste sind die Druckverluste, die durch die strömende Druckluft in der Rohrleitung entstehen. Immer dann, wenn kein ausreichender Druck an der Bedarfsstelle vorliegt, wird häufig an einen nicht ausreichend großen Kompressor gedacht. Oft kann jedoch eine Optimierung der Druckluftverteilung das Problem beheben, und im günstigen Fall auch der Druck am Kompressor reduziert werden.

Sicherheitszubehör[Bearbeiten]

Plötzliche Entspannung beim Trennen der Druckluftverbindung kann den sogenannten Peitschenhiebeffekt hervorrufen. Um dies zu vermeiden, fordert die Berufsgenossenschaft den Einsatz von Sicherheitsschnellkupplungen nach ISO-Norm 4414 und Sicherheitsnorm EN 983 „… Schnellkupplungen müssen so ausgewählt werden, dass sie, wenn sie gekuppelt oder entkuppelt werden, das Kupplungsteil nicht durch den Druck gefährlich wegschleudern …“.

  • Netzseitige Druckluft-Sicherheitsschnellkupplung für kleine und mittlere Verbraucher, DN 7 bis 11, Q bis ca. 80 l/s
  • Netzseitige Druckluft-Sicherheitsschnellkupplung für große Verbraucher, DN 12 bis 38, Q bis ca. 2.100 l/s

Anwendung[Bearbeiten]

Energieträger[Bearbeiten]

Druckluftlok

Druckluft wird zum Antrieb von Zylindern, Turbinen oder auch von Rohrpost verwendet, wobei beim Entspannen der Luft die Energie in Linearbewegung oder Drehbewegung umgewandelt wird. Hier kann die Druckluft mit Öl versetzt sein. Das Öl dient als Schmierstoff.

Allgemein ist diese Anwendung auch unter der Bezeichnung Pneumatik bekannt. Druckluft kann als Energiemedium eingesetzt werden, Beispiele hierfür sind Druckluftauto, Pressluftlokomotive, Druckluftspeicherkraftwerk, Druckluftwaffe, Einsatz in der Lackierung oder bei Bauarbeiten, Beispiele hierfür sind Drucklufthammer, Druckluftmeißel.

Im Bahnbetrieb dient Druckluft bei Schienenfahrzeugen zur Steuerung und als Energieträger für die Druckluftbremse.

Auch im Straßenverkehr findet die Druckluftbremse vor allem bei LKWs Anwendung.

Ende des 19. Jahrhunderts entstanden Druckluftnetzwerke zur Energieverteilung, da damals die elektrische Energieübertragung mit Wechselstrom noch in den Kinderschuhen steckte. Ab 1888 entstand in Paris ein größeres Druckluftnetze zum Antrieb von Aufzügen, Abwasserpumpen, Gleichstromgeneratoren und anderen Maschinen. Die Leitungen wurden in den Abwasserkanälen verlegt, wo sie im Gegensatz zu elektrischen Kabeln nicht durch die Feuchtigkeit beeinträchtigt wurden. Das Netzwerk erreichte in den 1960er Jahren eine Länge von 900 km. Die jährlich verwendeten 400 Millionen Kubikmeter Luft wurden von drei Kompressoranlagen erzeugt. Der Betrieb des Netzes wurde erst 1994 eingestellt.[2]

Signalübertragung[Bearbeiten]

In explosionsgefährdeten Bereichen war Druckluft für die Signalisierung (Einheitssignal 0,2–1 bar) und für die Bestätigung von Stellorganen (ca. 6 bar) lange Zeit die erste Wahl. Heute sind die elektronischen Lösungen preiswerter und flexibler (eigensichere Stromkreise).

Druckluft diente bei den ersten Fahrzeugen des Train du Mont-Blanc aus dem Jahre 1901 zur Mehrfachtraktionsteuerung. Die Fahrzeuge waren mit zwei durch den ganzen Zug gehenden Luftleitungen verbunden – eine für die Fahrtrichtung Vorwärts, die andere für Rückwärts. Die fünf Fahrstufen der Triebwagen wurden durch verschiedene Drücke in den Leitungen signalisiert.[3]

In Paris existierte zusätzlich zum Druckluftnetz zur Energieübertragung ein solches zum Betrieb einer Uhrenanlage, wobei die Nebenuhren mit der Hauptuhr über minütlich abgegebene Druckluftimpulse von 0,75 bar synchronisiert wurden. Das Netz, dessen Leitungen in der Kanalisation verlegt waren, nahm den Betrieb am 31. Dezember 1880 auf. 1887 wurden die größte Ausdehnung mit 7050 Uhren für 3185 Abonnenten erreicht. 1927 wurde der Betrieb eingestellt.[2]

Atemgas[Bearbeiten]

Druckluftflasche in einem Atemschutzgerät

Luft wird als gereinigtes und aufbereitetes Atemgas entweder in einem stationären Druckluftnetz, beispielsweise in einem Krankenhaus, verteilt oder mittels Atemschutzkompressoren in Druckluftflaschen zur Platzverringerung gespeichert und bei Bedarf über Atemregler zur Atmung mit Atemschutzgeräten und beim Gerätetauchen verwendet. Entspannte Druckluft enthält wegen der Entfeuchtung eine sehr geringe relative Feuchtigkeit, daher muss ihr für den langfristigen Einsatz am (intubierten) Patienten künstlich Luftfeuchtigkeit zugeführt werden, um eine Austrocknung der Lunge zu verhindern.

Beim Einsatz spezieller Atemgase, beispielsweise beim Sporttauchen mit Nitrox, darf nur ölfreie Druckluft beigemischt werden.

Reinigung[Bearbeiten]

Beim Entspannen der Luft in einer Düse wird ein schneller Luftstrom erzeugt, der zum Wegblasen von Partikeln und Flüssigkeiten verwendet werden kann.

Kühlung[Bearbeiten]

In vielen technischen Prozessen wird Druckluft zur Kühlung verwendet. Dabei wird ausgenutzt, dass sich Druckluft bei der Entspannung wegen des Joule-Thomson-Effektes abkühlt.

Stickstofferzeugung[Bearbeiten]

Um den Bedarf an Stickstoff eines Betriebes (beispielsweise in der Lebensmittelindustrie) zu decken, verwenden immer mehr Anwender Stickstoffgeneratoren. Mit Hilfe dieser Generatoren wird Stickstoff in einem speziellen Absorptionsverfahren vom Rest der Luft getrennt. Der gewonnene Stickstoff hat einen Reinheitsgrad bis zu 99,995 %.

Verwendungsdruck[Bearbeiten]

Als Energieträger oder zur Reinigung hat Druckluft meist einen Druck von 6 bis 8 bar. In Einzelfällen wird bis zu 16 bar benötigt. Zum Starten großer Motoren z.B. in Schiffen wird Druckluft mit 20 bis 30 bar verwendet, um damit entweder einen Durckluftstarter zu betreiben, oder die Druckluft direkt in einen oder mehrere Brennräume zu leiten und damit den Motor in Bewegung zu setzen Als Atemluft zum Gerätetauchen, in Atemschutzgeräten steht die Druckluft in den Flaschen bzw. Kartuschen unter 200 bis 300 bar. Auch werden spezielle Flaschen (Beispielsweise aus Carbon) befüllt, die bei Drücken von bis zu 300 bar in portablen Druckluftwerkzeugen (Druckluftnagler) oder auch Pressluftgewehren zum Einsatz kommen. Bei der pneumatischen Förderung von Schüttgütern werden in der Regel Drücke unter 4,5 bar benötigt.

Verwendung als Lager[Bearbeiten]

In Luftlagern können bewegliche Teile nahezu reibungsfrei gelagert werden.

Literatur[Bearbeiten]

Weblinks[Bearbeiten]

 Wiktionary: Druckluft – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Einzelnachweise[Bearbeiten]

  1.  Alfred Böge (Hrsg.): Handbuch Maschinenbau. Grundlagen und Anwendungen der Maschinenbau-Technik. 20 Auflage. Springer, 2011 (eingeschränkte Vorschau in der Google-Buchsuche).
  2. a b Tristan de la Broise, Florence Meffre: Histoire de la SUDAC (1877-1996). 7. November 1996, abgerufen am 27. Oktober 2013 (PDF; 980 kB, französisch).
  3. Christophe Jacquet: Les Z 200. In: Train du Mont Blanc. 8. Oktober 2012, abgerufen am 27. Oktober 2013 (französisch).