Fahrzeuggetriebe

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Dieser Artikel erläutert den Begriff der Kraftfahrzeugtechnik, zu Fahrradgangschaltungen siehe Gangschaltung.
Acht-Stufen-Automatgetriebe der ZF Friedrichshafen vom Typ 8HP70
Ein Fahrzeugschaltgetriebe eines LKW; gut zu sehen die Schaltgabeln und -muffen

Ein Fahrzeuggetriebe ist das Getriebe im Antriebsstrang eines Fahrzeuges, das die Motordrehzahl auf die Antriebsdrehzahl übersetzt. Das Schaltgetriebe ist als Verstell- bzw. als Wechselgetriebe (siehe unten) ausgeführt; es ist bei Kraftfahrzeugen notwendig, um die Spreizung des Geschwindigkeitsbereichs mit der Spreizung des Motordrehzahlbereichs zur Deckung zu bringen.

Das Fahrzeuggetriebe ist eine Unter-/Sonderform des allgemeinen Getriebes, wie der Begriff im Maschinenbau definiert ist: Im Allgemeinen werden Vorrichtungen für jegliche kinematisch gekoppelte Wandlung oder Umsetzung von Bewegungen „Getriebe“ genannt.

Notwendigkeit eines Schaltgetriebes[Bearbeiten]

Ein Schaltgetriebe ist notwendig, wenn der Spreizungsfaktor vor und hinter dem Getriebe verschieden ist. (Der Spreizungsfaktor ist der Quotient aus größtem Wert zu kleinstem Wert; hier: Drehzahlen)

Beispiel

Ein PKW habe eine kleinste Geschwindigkeit von Vmin= 5 km/h (geschlossene Kupplung) und eine Höchstgeschwindigkeit Vmax= 250 km/h. Das ergibt einen Spreizungsfaktor = \textstyle \frac{V_\text{max}}{V_\text{min}} = 50 für die Kardanwelle (den „Ausgang“ des Fahrzeuggetriebes). Der Verbrennungsmotor hat eine Leerlaufdrehzahl von 600/min sowie eine höchste Drehzahl von 6000/min, also einen Spreizungsfaktor von 10. Ohne Schaltgetriebe könnte der PKW, wenn 600/min Motordrehzahl zu 5 km/h führten, also maximal 50 km/h erreichen.

Manuelle Betätigung[Bearbeiten]

Schaltgetriebe[Bearbeiten]

Schieberadgetriebe, je ein Zahnradblock auf oberen Welle wird zum Schalten mit der Schaltgabel (nicht dargestellt) so verschoben, dass ein Rad in das Zahnrad auf der unteren Welle eingreift

Bei einem Schaltgetriebe – auch Wechselgetriebe genannt – werden die Drehzahlübersetzungen durch die Zahnradpaare gebildet.[1] Die häufigste Ausführung eines Handschaltgetriebes ist die des Stirnradgetriebes. Geschaltet wird durch die Schaltmechanik im Getriebe. Diese Mechanik im Getriebe ist wiederum über ein Gestänge oder Seilzug mit einem Schalthebel verbunden.

Das Drehmoment wird auf die Getriebeeingangswelle von der Kupplung über ein Keilwellenprofil übertragen. Auf der Getriebeeingangswelle sind die Zahnräder der einzelnen Getriebestufen montiert. Sie kämmen entweder mit der Getriebeausgangswelle oder einer Vorgelegewelle, dann ist die Ausgangswelle koaxial (fluchtend) zur Eingangswelle angebracht und es gibt einen direkten Gang, das heißt die Wellen werden gekuppelt und die Übersetzung ist genau 1:1. Die Zahnräder beider Wellen bilden Paare und greifen ineinander. Die Zahnräder sind je nach Bauart auf den Wellen fest montiert oder frei drehend (aber axial fixiert). Um einen Kraftschluss zwischen der Welle und den frei drehenden Zahnrädern herzustellen, werden diese mit einer Klauenkupplung auf der Welle fixiert. Eine Klauenkupplung ist auf der Welle radial fixiert und kann axial verschoben werden. An den Flanken befinden sich Zahnprofile, deren Gegenstücke sich in der Zahnradflanke wiederfinden. Für einen Schaltvorgang wird die Klauenkupplung von der Schaltgabel gegen ein Zahnrad gedrückt. Rasten die Zahnprofile ein, ist der Gang eingelegt. Um den Schaltvorgang schonender zu gestalten, werden bei Fahrzeuggetrieben an den Seiten der Klauenkupplungen Synchronringe eingesetzt. Synchronringe gleichen vor dem Einrasten die Drehzahl des Zahnrades an die Drehzahl der Welle an. In der Regel sind die Gangräder schräg verzahnt; um die Geräuschentwicklung niedrig zu halten und größere Drehmomente übertragen zu können, sind hier ständig mehrere Zähne im Eingriff. Allerdings entstehen durch Schrägverzahnungen Axialkräfte, die von der Lagerung aufgenommen werden müssen, außer bei der Pfeilverzahnung. Dort gleichen die gegensinnigen Schrägverzahnungen (in einem Zahnrad) die Axialkräfte aus. Für die Rückwärtsfahrt ist eine Drehrichtungsumkehr erforderlich. Dies wird durch ein weiteres Zahnrad realisiert.[2] Zum Gangwechsel muss der Kraftfluss unterbrochen werden. Dies wird durch eine Kupplung bewirkt. Der Fahrer betätigt hierbei den Kupplungshebel, die Kupplung trennt und er kann mit dem Schalthebel und der damit verbundenen Schaltmechanik im Getriebe einen Gang wechseln (Schaltvorgang). Das Schaltgetriebe ist auch heute noch die am häufigsten anzutreffende Getriebeart in Kraftfahrzeugen.[3]

Funktionsweise[Bearbeiten]

5-Gang-Getriebe ohne Gehäuse des Golf IV

Als Beispiel dient hier das Getriebe eines Fahrzeuges mit Frontmotor und Hinterradantrieb.

In dem geschlossenen Getriebegehäuse verlaufen zwei Wellen: die Hauptwelle, die bildlich gesehen vom Eingang am Motorflansch bis zum Triebwellen-Ausgang führt und nach der ersten Zahnradstufe unterbrochen ist, sowie die Vorgelegewelle, die parallel zur Hauptwelle verläuft.

Von dem vorderen Teil der Hauptwelle ausgehend wird über das erste Zahnradpaar die Vorgelegewelle angetrieben. Durch Schalten der jeweiligen nachfolgenden Zahnradstufen wird das Drehmoment von der Vorgelegewelle auf den hinteren Teil der Hauptwelle geleitet und von dort weiter zum Abtrieb. Die einzelnen Zahnradpaare sind beim synchronisierten Getriebe ständig im Eingriff. Ein Zahnrad ist fest mit der Welle verbunden, beim anderen kann mit einer Schaltmuffe eine formschlüssige Verbindung mit der Welle geschaltet werden. In der Regel sitzen die Schaltmuffen an der Hauptwelle, sie können sich jedoch auch auf der Vorgelegewelle befinden. Durch Koppeln der beiden Teile der Hauptwelle wird der Abtrieb direkt angetrieben (direkter Gang), die Vorgelegewelle läuft in diesem Fall mit, ohne jedoch Drehmomente zu übertragen.

Die Gänge werden nun wie folgt geschaltet:

H-Schaltung[Bearbeiten]

Animation des Schaltvorgangs

Befindet sich das Getriebe im Leerlauf, ist keines der Gangräder mit der Antriebswelle verbunden. Der Kraftschluss ist unterbrochen. Alle Zahnräder von Antriebswelle und Vorgelegewelle sind ständig im Eingriff, es wird jedoch keine Kraft übertragen.

Um einen Gang einzulegen, muss der Kraftschluss zwischen Motor und Getriebe unterbrochen werden. Dazu dient die Kupplung. Der antriebsseitige Teil der Hauptwelle kommt nach kurzer Zeit zum Stillstand.

Ein Dreh-Schiebe-Mechanismus sorgt nun dafür, dass durch die Bewegung des Ganghebels die Schaltklaue betätigt wird, welche die für den gewählten Gang zuständige Schaltwelle mit der Schaltmuffe zwischen Gangrad und Vorgelegewelle schiebt. Vereinfacht dargestellt wird durch eine Bewegung des Ganghebels durch die Leerlauf-Gasse eine Dreh-Bewegung der Schaltstange im Getriebe ausgelöst, die mit dem Schaltfinger jeweils einen Zugriff auf eine Schaltwelle bewirkt, welche durch die Schaltklaue in zwei Richtungen bewegt werden kann. Eine Schaltmuffe, die von der Klaue auf der Welle verschoben wird, ist also für jeweils zwei Gänge zuständig. Man könnte sagen, eine Vor-Rück-Bewegung des Schalthebels bewirkt eine Verschiebung der Klaue, und eine Rechts-Links-Bewegung verdreht die Schaltstange und wählt eine andere Schaltwelle aus. Daraus ergibt sich die H-förmige Anordnung in der Schaltkulisse. Ein Viergang-Getriebe hat drei Schaltwellen – zwei für die Vorwärtsgänge und eine für den Rückwärtsgang. Der Rückwärtsgang wird über eine dritte Getriebewelle geschaltet.

Durch das Schieben des Schalthebels (auch Schaltknüppel genannt) in die Gasse des gewählten Ganges wird also eine Schaltmuffe auf der Antriebswelle zwischen Gangrad und Triebrad geschoben. Das Gangrad ist fest mit der Welle verbunden und der Kraftschluss innerhalb des Getriebes hergestellt.

H-Schaltungen lassen eine freie Gangwahl zu (zumindest theoretisch): Es kann von jedem Gang in jeden anderen geschaltet werden (während des Betriebes sollte man dies aber beim Rückwärtsgang unterlassen).

Sequentielle Getriebe[Bearbeiten]

Sequentielle Getriebe lassen sich nicht wahlfrei schalten, nur sequentiell. Es kann nur jeweils in den nächsthöheren oder nächstniedrigeren Gang gewechselt werden, es ist aber nicht möglich, einen oder mehrere Gänge zu überspringen.

Ein solches Getriebe findet sich beispielsweise im Smart Fortwo und in Motorrädern.

Ein verbreitetes sequentielles Getriebe ist das Kegelzuggetriebe. Bei dieser Getriebebauart wird auf die Schaltklauen verzichtet, die Vorgelegewelle ist hohlgebohrt. Innerhalb der Vorgelegewelle ist an einer Stange ein Kegel befestigt. Dieser drückt durch Bohrungen in der Vorgelegewelle an den Gangrädern Kugeln nach außen, die für einen Formschluss zwischen Welle und Gangrad sorgen. Eine leicht abgewandelte Bauform ist das Ziehkeilgetriebe, in dem in einer genuteten Welle ein Keil beim Gangwechsel längs bewegt wird und das jeweilige Zahnrad mit Formschluss verriegelt. Beispiele: Getriebe der Mokicks und Kleinkrafträder von Zündapp, DKW und Simson.

Synchronisation[Bearbeiten]

Wird bei einem nicht synchronisierten Getriebe der Gangwechsel bei Drehzahldifferenz eingeleitet, so muss die Differenz erst einmal angeglichen werden. Wenn diese Bedingung nicht erfüllt ist, stellt sich ein Rattern ein, das bei unsynchronisierten Getrieben den Schaltvorgang begleitet. Ursache ist die als Vielzahnmuffe ausgeführte Schaltmuffe, die in den mit unterschiedlicher Drehzahl laufenden Kupplungskörper des Gangrades geschoben wird. So kam es früher auf die Geschicklichkeit des Fahrers an, wie geräuschvoll der Schaltvorgang ausgeführt wurde.

Um die Geräusche zu verhindern, gibt es zwei Techniken: Externe und interne Synchronisation. Bei der internen Synchronisation, die bei synchronisierten Getrieben Anwendung findet, besorgt das ein der Schaltmuffe vorgelagerter Synchronring. Dieser besteht üblicherweise aus einem Grundkörper aus Messing, umgeformtem Stahlblech oder einem Stahl-Sinter-Werkstoff. Er ist mit einer zusätzlichen speziellen Sinterreibschicht oder einer mittels Plasmaspritzen aufgebrachten Molybdänbeschichtung versehen. Carbonbeläge finden ebenfalls Verwendung. Diese Reibschichten wirken als Kegelkupplung und erzeugen Reibung zwischen Gangrad und Vorgelegewelle. Das gleicht die Drehzahl an, bis die Schaltmuffe schließlich hineinrutschen kann. Dabei unterscheidet man zwischen einfacher Synchronisation und Zwangssynchronisation (auch Sperrsynchronisation), bei der die Schaltmuffe erst bei korrektem Gleichlauf einrückt.

Bei unsynchronisierten Getrieben ist eine externe Synchronisation erforderlich. Bei alten Bauarten lag es in der Verantwortung des Fahrers, die Drehzahlen beider Enden des Kraftstranges anzugleichen. Die Anpassung war reine Gefühls- und Erfahrungssache. Vor dem Hochschalten wird im Leerlauf kurz eingekuppelt (Zwischenkuppeln), um die Antriebswelle (oder Vorgelegewelle) abzubremsen. Das ist notwendig, weil die Zahnräder des nächsten Ganges eine langsamere Umfangsgeschwindigkeit haben. Beim Herunterschalten wird ebenfalls im Leerlauf eingekuppelt, dabei aber gefühlvoll Gas gegeben (Zwischengas). Die Zahnräder auf der Antriebswelle werden an die Umfangsgeschwindigkeit der Zahnräder des kleineren Ganges angepasst. Durch unsachgemäße Bedienung kann der Gang nicht oder nur schwer eingelegt werden. Das führt zwangsläufig zu Schäden an Zahnrädern (Schubradgetriebe) oder Schaltklauen (Schubklauengetriebe).

Auch wenn das Zwischenkuppeln oder Zwischengasgeben bei einem Getriebe mit interner Synchronisation nicht notwendig ist, kann es bei geübter Anwendung zu einem schnelleren und schonenden Schaltvorgang führen. Bei kleinen Getrieben im PKW-Bereich ist der Effekt nur wenig ausgeprägt, bei LKW mit entsprechend schweren Getrieben jedoch oft deutlich spürbar.

Ein Getriebe mit Sperrsynchronisation kann im Notfall auch ohne Kupplung geschaltet werden. Wenn die Kupplung nicht mehr funktionsfähig ist, wird mit eingelegtem erstem Gang der Motor gestartet. Will der Fahrer schalten, gibt er leichten Zug auf den Schalthebel, der daraufhin kurz nach dem Gas-Wegnehmen in „Neutral“ springt. Nun wird gewartet, bis der Motor nach Gehör in etwa die Drehzahl des gewählten nächsten höheren Ganges hat, und dann wird leichter Druck auf den Schalthebel ausgeübt. Stimmt die Drehzahl, „rutscht“ der Gang hinein. Herunterschalten wird, ähnlich wie beim unsynchronisierten Getriebe, durch Gasgeben und Warten erreicht. An eine rote Ampel darf nur ganz langsam herangefahren werden, um ein Anhalten und damit einen Neustart zu vermeiden. Diese Vorgehensweise ist nur für erfahrene Fahrer im Notfall anwendbar, da die Synchronringe auf Dauer starkem Verschleiß unterliegen.

Ohne Kupplung sollte man nur im absoluten Notfall fahren, denn die Gefahr, das Fahrzeug nicht rechtzeitig zum Stehen zu bringen (und deswegen einen Unfall zu verursachen), ist ohne Kupplungsbetätigung hoch.

Neuere, zumeist automatisierte Getriebe oder sequentielle Getriebe im Rennsport werden synchronisiert, indem eine Elektronik die Motordrehzahl so angleicht, dass ein problemloses Einlegen des Ganges möglich ist.

Ein im Rennsport nicht relevanter, aber bei Straßenfahrzeugen sehr erwünschter Vorteil ist die geringere Geräuschentwicklung. Schieberadgetriebe haben fast immer geradverzahnte Zahnräder, bei denen das schlagartige Ineinandergreifen der Zähne ein Jaulen verursacht. Mit Klauen geschaltete oder Synchrongetriebe erlauben dagegen die Verwendung von Zahnrädern mit Schrägverzahnung und sanfterem Zahneingriff.

Schieberadgetriebe[Bearbeiten]

Bei Schieberadgetrieben sind die Gangräder fast immer gerade verzahnt und die Naben und Getriebewellen mit Keilnuten versehen, also nicht auf der Vorgelegewelle verdrehbar. Sie werden beim Schalten auf der Welle verschoben und sind also nicht ständig im Eingriff. Solche Getriebe ohne Synchroneinrichtung lassen sich nur mit Zwischengas herunter- und mit Zwischenkuppeln hochschalten und die gerade Verzahnung erzeugt im Betrieb ein charakteristisches lautes Heulgeräusch (wie bei modernen Autos noch der Rückwärtsgang), sie haben aber einen höheren Wirkungsgrad. Schieberadgetriebe waren vor Einführung der Synchronisation in den 1930er-Jahren weit verbreitet, auch danach waren noch lange nur die oberen Gänge vom II. an aufwärts synchronisiert. Der letzte deutsche Wagen mit einem Schieberadgetriebe war der Lloyd LP 300. Beim VW Käfer waren anfangs I. und II. Gang als Schieberäder ausgeführt, III. und IV schrägverzahnt („geräuscharm“) mit Klauenschaltung (als runde Stifte ausgeführt)[4].

Getriebe für Rennsportanwendungen, auch kurz Renngetriebe genannt, werden auch heute noch als Schieberadgetriebe gebaut. Dies ermöglicht bei gleichen Maßen eine höhere Belastbarkeit (größeres maximal übertragbares Drehmoment), da Wellen stärker dimensioniert werden können (interessant bei Rallyefahrzeugen bzw. Fahrzeugen der Cup-Klasse), oder verringertes Gewicht (bei Touren- und Rennwagen). Die aktuelle Entwicklung im Rennsport geht zu unterbrechungsfrei hochschaltenden Getrieben (durch den hohen Luftwiderstand und das geringe Gewicht büßen Rennwagen bei einem 'normalen' Gangwechsel 2–3 km/h ein). Dafür werden kurzzeitig zwei Gänge gleichzeitig eingelegt. Um einen Getriebeschaden zu vermeiden, gibt es verschiedene Möglichkeiten. Eine ist die Verwendung von einem oder mehreren Freiläufen, so dass beim überschneidenden Hochschalten das schneller drehende Zahnrad des höheren Gangs das langsamer drehende Zahnrad des niedrigeren Gangs überholt. Der Freilauf verhindert hierbei, dass das Getriebe verspannt wird. Die andere Variante besteht darin, dass für kurze Zeit (einige Millisekunden) zwei Gänge gleichzeitig eingelegt sind. Um dies ohne Verspannungen zu ermöglichen, ist ein Verdrehspiel zwischen den Gangrädern und ihrer Welle erforderlich. Wenn der vorher eingelegte Gang nicht rechtzeitig herausgezogen wird, so kommt es zu einem Getriebeschaden. Bei Schaltvorgängen kommt es zu sehr starken Schaltstößen, deshalb sind derartige Bauarten für PKW ungeeignet.

Automatisierte Betätigung[Bearbeiten]

Automatikwählhebel

Halbautomatische Getriebe und Getriebe mit Wandlerschaltkupplung[Bearbeiten]

Eine Sonderform der Schaltgetriebe sind halbautomatische Getriebe, bei denen man nicht kuppeln muss, aber selbst schaltet. Beim Berühren des Schalthebels wird automatisch ausgekuppelt, wenn der nächste Gang eingelegt ist, wieder eingekuppelt. Prinzipiell sind sie mechanische Getriebe mit einer automatisch betätigten Einscheibenkupplung oder Magnetpulverkupplung.

Bei Getrieben mit einer Wandlerschaltkupplung (WSK) wird ein konventionelles Schaltgetriebe mit einem Drehmomentwandler kombiniert, der sich zwischen Motor und Kupplung befindet und ein vom konventionellen Automatikgetriebe her bekanntes komfortables verschleißfreies Anfahren und Rangieren ermöglicht. Um den Gang zu wechseln, muss der Fahrer wie bei einem normalen Schaltgetriebe die konventionelle Kupplung betätigen, um den Kraftfluss zu unterbrechen und auch manuell schalten. Heute wird diese Bauart vor allem bei Schwerlast-LKW eingesetzt.

Bei einigen Fahrzeugen wurden auch beide Konzepte (halbautomatische Getriebe + WSK) kombiniert.

Beispiele für Fahrzeuge mit halbautomatischen Getrieben sind der im Ford 17M, dem VW Käfer und Karmann Ghia, dem DKW F 11/12 u. AU 1000 und Opel Rekord („Olymat“) verbaute Saxomat, ferner die bei Renault 4CV und Dauphine auf Wunsch lieferbare Ferlec-Magnetpulver-Kupplung, die WSK mit zusätzlich automatisierter Kupplung beim Mercedes 219/220 S/220 SE („Hydrak“), Porsche 911 („Sportomatic“), NSU Ro 80 (serienmäßig), Citroën DS und Renault Frégate („Transfluide“) oder die in neuerer Zeit im Citroën CX erhältliche C-Matic. Für den Trabant gab es unter der Bezeichnung Hycomat ein halbautomatisches Getriebe.

Seit den frühen 1990er-Jahren gibt es auch verlustfrei arbeitende Halbautomatikgetriebe mit automatischem Kupplungssystem, bei denen von Hand geschaltet und die herkömmliche Scheibenkupplung elektronisch-hydraulisch betätigt wird, beispielsweise beim Renault Twingo „Easy“, der Mercedes-Benz A-Klasse W168 mit Automatischem Kupplungssystem (AKS) und Saab.

Automatisierte Schaltgetriebe[Bearbeiten]

Automatisierte Schaltgetriebe, im Englischen auch als Automated Manual Transmission (AMT) bekannt, ermöglichen aufgrund speziell abgestimmter Fahrprogramme der Getriebesteuerung die Kombination von erhöhtem Fahrkomfort durch eine benutzerfreundliche Getriebesteuerung mit der Wirtschaftlichkeit durch reduzierten Kraftstoffverbrauch und verringerte Emissionswerte.[5] Aus diesem Grund kam beispielsweise im 3-Liter-Lupo von Volkswagen ein automatisiertes Schaltgetriebe zum Einsatz.

Wesentlicher Unterschied zwischen den im Folgenden behandelten klassischen automatisierten Schaltgetrieben (ASG) und Doppelkupplungsgetrieben (DKG) ist, dass beim ASG nur eine Kupplung vorhanden ist. Nachteilig ist die Zugkraftunterbrechung – der Kraftfluss muss zum Schalten kurzzeitig unterbrochen werden. Vorteilhaft ist dabei, dass die Kupplung im Ruhezustand geschlossen ist und nur zum Öffnen Energie braucht, weshalb das ASG meist in besonders sparsame bzw. leichte Fahrzeuge verbaut wird.

Beim DKG sind zwei Kupplungen vorhanden: Vorteilhaft ist, dass beim Öffnen der einen Kupplung die andere gleichzeitig schließen kann und so die Zugkraft nicht unterbrochen wird. Nachteilig ist, dass beide Kupplungen im Ruhezustand offen sind und die Kupplung im aktiven Leistungszweig mit Energieaufwand zugehalten werden muss.

Klassisches automatisiertes Schaltgetriebe (ASG)[Bearbeiten]

Ein automatisiertes Schaltgetriebe, auch automatisches Schaltgetriebe genannt, ist ein herkömmliches Schaltgetriebe, das um automatisierte Schaltkomponenten erweitert ist.[5] Der grundsätzliche Unterschied zu einem Schaltgetriebe besteht darin, den Gangwechsel nicht vom Fahrer durchführen zu lassen, sondern durch hydraulisch betätigte Zylinder sowie elektrische Stellmotoren, der sogenannten Aktuatorik. Während des Gangwechsels trennt der angesteuerte Kupplungsaktuator die Zugkraft, anschließend wird durch die im Getriebesteuergerät hinterlegte Getriebelogik der berechnete Gangwechsel vom Fahrer an die Schaltaktuatorik des Getriebes weitergeleitet und das Getriebe schaltet je nach Fahrerwunsch in den nächsten höheren oder niedrigeren Gang.[6]

Die Schaltvorgänge beim automatisierten Schaltgetriebe werden automatisch vom Getriebe durch das im Steuergerät hinterlegte Schaltprogramm durchgeführt oder aber es besteht für den Fahrer die Möglichkeit, durch den Wählhebel in der Mittelkonsole oder der Paddles am Lenkrad durch das Antippen der Paddles nach vorne den nächsthöheren Gang zu schalten oder durch Antippen zurück in den nächstniedrigeren Gang zu schalten. Durch das Schaltprogramm ist gewährleistet, dass Schaltfehler vermieden werden.[7] In der Regel ist es nur bedingt möglich, Gänge zu überspringen. Derartige Schaltvorgänge werden von der Elektronik nur dann ausgeführt, wenn der Motor hierbei innerhalb eines zulässigen Drehzahlbereichs bleibt.

Bei LKW, besonders für den Fernverkehr, kommen seit Mitte der 1980er-Jahre solche automatisierten Getriebe zum Einsatz, bei denen der Fahrer den entsprechenden Gang vorwählt und die elektronische Steuerung des Getriebes über elektro-pneumatische Schaltzylinder das Getriebe schaltet. Bei der klassischen EPS von Mercedes-Benz wählt der Fahrer beispielsweise den „6. Gang/niedrig“ aus und betätigt das Kupplungspedal. Dadurch wird die Steuerelektronik aktiviert und prüft, ob der Schaltvorgang aufgrund der jeweiligen Motordrehzahlen auch ausgeführt werden kann. Ist dies der Fall, so schaltet die Steuerelektronik über die pneumatischen Schaltzylinder in den entsprechenden Gang. Verweigert sie den Schaltvorgang, weil der Motor zu überdrehen droht, wird dies dem Fahrer durch einen Warnton angezeigt. In der Regel schaltet das Getriebe dann in den Leerlauf.

Neuere Systeme im LKW oder Reisebus schalten auch vollautomatisiert; ein Kupplungspedal fehlt oder kann für Notfälle ausgeklappt werden. Standardmäßig sind moderne LKW mit einem Achtgang-Getriebe ausgestattet. Basis der LKW-Getriebe ist in der Regel ein Viergang-Schaltgetriebe, das mit einer Vorschaltgruppe und einer Range-Gruppe erweitert werden kann, sodass 16 Gangstufen zur Verfügung stehen.

Vor- und Nachteile[Bearbeiten]

Die meisten Vorteile teilt das ASG mit dem manuellen Schaltgetriebe:

  • verhältnismäßig einfacher mechanischer Aufbau,
  • gute Wirkungsgrade, weil keine Umlaufschmierung oder Planschverluste des Öls auftreten und
  • viele Gleichteile mit manuellen Schaltgetrieben, sodass die große Stückzahl zu günstigen Kosten führt.

Zusätzlich bietet es weitere Vorteile:

  • kompakte Bauweise, weil die Aktuatorik mit geringer Leistung auskommt und entsprechend billig und platzsparend gebaut werden kann
  • die gesamte Aktuatorik des ASG wird nur während des Schaltvorgangs aktiv und verbraucht daher nur in dieser Situation Energie
  • die üblichen Vorteile automatischer Getriebe wie Sicherheit gegen Abwürgen, Verschalten und Überdrehen des Motors und Strategien zum optimalen Verbrauch, zu besonderer Sportlichkeit oder zum motorschonenden Betrieb während der Kaltlaufphase

Die wesentlichen Nachteile sind:

  • Zugkraftverlust während des Schaltvorgangs und
  • lange Schaltdauer.

Die Nachteile führen besonders unter Last zu fühlbaren Schaltrucken.

Gegen die Nachteile nutzen neuere ASG eine zweite Vorgelegewelle, auf der (wie beim DKG) der Schaltvorgang für den jeweils benachbarten Gang vorbereitet werden kann, sodass die Zugkraftunterbrechung auf die Zeit für das kurzzeitige Lüften der Kupplung (50 ms beim ISR von Graziano im Lamborghini Aventador[8]) reduziert wird.

Die ersten in Großserienfahrzeugen eingesetzten automatisierten Schaltgetriebe waren mit hydraulischer Aktuatorik 1997 der BMW M3, bei dem das vorhandene klassische Schaltgetriebe mittels Hydraulik zum automatisierten Getriebe aufgerüstet wurde, und 1998 der Smart Fortwo, der als erstes Fahrzeug ein elektromotorisch betätigtes automatisiertes Schaltgetriebe bekam. Die Besonderheit beim Smart war, dass sein Getriebe ausschließlich automatisiert angeboten wurde und es die „manuell betätigte“ Variante nur als Programmsperren-Änderung der Software in der Getriebesteuerung gibt. Ein zunächst nur „manuell“ zu schaltender Smart kann per Software-Änderung leicht automatisiert werden. Beide Getriebe wurden von Getrag entwickelt.

Verbreitung[Bearbeiten]

Wegen des günstigen Wirkungsgrades ist besonders in Kleinwagen das ASG eine beliebte Ausstattungsvariante, so unter anderem im Audi A2 1.2 TDI, Opel Corsa oder Smart; im VW Lupo 3L wurden ausschließlich ASG verbaut. Bei dem Dreiliter-Auto des VW-Konzerns machten jedoch die Getriebe mit relativ hohen Anteilen an Schadensfällen und mit sehr teuren Austauschgetrieben negativ auf sich aufmerksam; oft werden (Stand 2011) auf dem Gebrauchtmarkt Fahrzeuge mit defekter Getriebesteuerung angeboten.

Automatisierte Schaltgetriebe werden von diversen Fahrzeugherstellern mit verschiedenen Markenbezeichnungen angeboten:

Doppelkupplungsgetriebe (DKG, DSG, PDK)[Bearbeiten]

Hauptartikel: Doppelkupplungsgetriebe

Eine relativ neue Variante des automatischen Schaltgetriebes ist das Doppelkupplungsgetriebe (bekannter als „Direktschaltgetriebe“ oder „DSG“, englisch: Direct Shift Gearbox): Es besteht aus zwei automatisierten Teilgetrieben mit jeweils einer dazugehörigen Kupplung. Ein Teilgetriebe trägt die geraden Gänge, das andere die ungeraden Gänge und den Rückwärtsgang. Vor dem Schalten wird zunächst im lastfreien Zweig der zu schaltende Gang eingelegt. Dann wird die Kupplung des lastfreien Ganges geschlossen und die des anderen Ganges gleichzeitig geöffnet. Dadurch kann ohne Zugkraftunterbrechung geschaltet werden – die für den Gangwechsel benötigte Zeit hängt nur von der Schaltgeschwindigkeit der Kupplungen ab.

Vor- und Nachteile[Bearbeiten]

Die wesentlichen Vorteile des DKG sind:

  • Schalten ohne Zugkraftunterbrechung, allerdings nur in benachbarte Gänge (gerade-ungerade)
  • sehr schnelle Schaltvorgänge, auch mit manueller Betätigung für den Einsatz im Rennsport geeignet
  • guter Wirkungsgrad im Vergleich zu Wandler-Automatikgetrieben
  • günstiger Bauraumbedarf bei Fahrzeugen mit front-quer eingebauten Motoren[9]
  • viele Gleichteile mit manuellen Schaltgetrieben, sodass die große Stückzahl zu günstigen Kosten führt
  • die üblichen Vorteile von automatischen Getrieben, wie Sicherheit gegen Abwürgen, Verschalten und Überdrehen des Motors und Strategien zum optimalen Verbrauch, zu besonderer Sportlichkeit oder zum motorschonenden Betrieb während der Kaltlaufphase

Der Nachteil im Vergleich zum ASG ist der permanente Energiebedarf, um die Kupplung im Leistungszweig geschlossen zu halten.

Aufgrund ihrer Eigenschaften sind DSG eine Konkurrenz zu herkömmlichen Automaten mit Wandler und Planetengetriebe.

Verbreitung[Bearbeiten]

Ursprünglich von Porsche in den 1980er-Jahren für den Rennsport entwickelt, waren Volkswagen und Audi die Vorreiter beim Einsatz dieser Technologie in der Großserie und konnten sich hiermit einen technologischen Vorsprung auf dem Markt erarbeiten. Seit 2002 ist ein Doppelkupplungsgetriebe in der Golf- und Passatklasse im Serieneinsatz (6-Gang, Zulieferer für die nasslaufende Kupplung ist BorgWarner). Die VW-interne Bezeichnung lautet DQ250 (für Doppelkupplung–Quereinbau–250 Nm, wobei es 320 Nm übertragen kann).

In den folgenden Jahren kam ein 7-Gang-DSG mit der internen Bezeichnung DQ200 (Polo und kleine Golfklasse) von VW heraus. Hierfür liefert LuK eine trockene Doppelkupplung.

Im Jahr 2009 kam das erste speziell für Audi entwickelte DSG mit der Bezeichnung DL501 mit dem Audi Q5 auf dem Markt. Bei diesem Getriebe kommt wieder eine nasslaufende Doppelkupplung von BorgWarner zum Einsatz. DL501 steht für Doppelkupplung–Längseinbau–500 Nm und kommt in den Modellen A4, A5, A6 nach und nach zum Einsatz.

Zuletzt folgte im Herbst 2009 das DQ500 (7-Gang-DKG) für den VW-Bus T5; es wird seit Juni 2010 auch für den Tiguan angeboten. Die nasslaufende Kupplung wird vom VW Werk Kassel entwickelt und hergestellt, womit erstmals eine von VW eigenentwickelte Doppelkupplung zum Einsatz kommt.

Alle Varianten (DQ200, DQ250, DQ500 und DL501) werden im Volkswagenwerk Kassel gefertigt.

Seit Juli 2008 bietet Porsche für den neuen 911 das 7-Gang-PDK von ZF an. Für den Boxster und den Cayman ist es ebenfalls auf Bestellung erhältlich. Seit September 2009 gibt es das PDK auch für den Panamera und seit Oktober 2009 für den Turbo. Für den BMW M3 ist seit März 2008 ein Doppelkupplungsgetriebe mit sieben Vorwärtsgängen von Getrag erhältlich. Ford, Mitsubishi, Ferrari, Mercedes-Benz und Volvo haben seit 2008 ebenfalls Modelle mit Doppelkupplungsgetrieben von Getrag im Angebot. Erstmals wird seit Sommer 2010 ein DKG in einem Serienmotorrad der Marke Honda (VFR 1200) verbaut.

Wandler-Automatikgetriebe[Bearbeiten]

6-Stufen-Automatikgetriebe ZF 6HP26 für Leistungen bis 320 kW. Getriebeeingang (Motorseite) ist links am Wandler (gelb).

Ein Wandler-Automatikgetriebe unterscheidet sich im Aufbau von einem Schaltgetriebe im Wesentlichen durch folgende Punkte:

Hauptartikel: Drehmomentwandler

Vor- und Nachteile[Bearbeiten]

Als wesentliche Vorteile des Wandler-Automaten gelten:

  • keine Zugkraftunterbrechung
  • nahezu verschleißfreies Anfahren
  • der Wandler dämpft Schwingungen im Antriebsstrang
  • durch die Differenzdrehzahl zwischen Pumpe und Turbine des Wandlers wird das durch den Motor zur Verfügung gestellte Drehmoment erhöht (bis zu zweifache Drehmomentüberhöhung)
  • der Wandler kann mit einer Wandlerkupplung ausgestattet sein, mit welcher der hydraulische Kreislauf überbrückt wird, wenn keine weitere Wandlerüberhöhung mehr benötigt wird (Wirkungsgrad); die bei geringeren Motordrehzahlen höheren Schwingungen werden durch einen Dämpfer verringert
  • durch sogenannten Überschneidungsschaltungen sind die Schaltungen nahezu nicht spürbar
  • hohe Drehmomentdichte und kompakte Bauweise durch Planetenradsätze

Die bekanntesten Nachteile sind:

  • schlechterer Wirkungsgrad und Verbrauchsnachteil, wird bei modernen Automatikgetrieben weitgehend ausgeglichen
  • Abschleppen mit rollender Antriebsachse ist nicht bei allen Modellen möglich bzw. nur über kurze Wegstrecken, weil ansonsten Schäden im Getriebe infolge Schmierungsmangels entstehen können, Abschleppen über lange Wegstrecken erfordert eine zweite Ölpumpe am Achsabtrieb (ältere Mercedes-Fahrzeuge)
  • hohe Kosten, beispielsweise durch die Fertigung enger Toleranzen im hydraulischen Steuerkasten

In Ausnahmefällen wird bei Automatikgetrieben auch auf Planetenradsätze verzichtet, so zum Beispiel bei den Hondamatic-Getrieben und beim Automatikgetriebe der Mercedes-Benz A-Klasse (W168). Der Aufbau solcher Getriebe ähnelt dem eines Schaltgetriebes. Das wesentliche Unterscheidungsmerkmal ist, dass statt Synchronisierungen und Schaltmuffen für jede Schaltstufe des Automatikgetriebes eine eigene Lamellenkupplung vorhanden ist.[10]

Die kraftschlüssige Verbindung der einzelnen Planetensätze mit der Ein- und Ausgangswelle stellen Lamellenkupplungen her. Der Fahrbetrieb wird durch ein Fahr- und Schaltprogramm im Steuergerät vorgegeben.[10] Die Steuerung des Getriebes erfolgte bis Ende der 1980er-Jahre hydraulisch. In der heutigen Zeit (Stand 2008) erfolgt die Steuerung elektronisch und die Betätigung der Schaltkupplungen mittels elektrisch angesteuerter Hydraulikventile.

Funktion und Steuerung[Bearbeiten]

Im Drehmomentwandler wird in Form von Reibungswärme ein Teil der Motorleistung des erzeugten Schlupfes an das Öl abgegeben. Um den damit einhergehenden Wirkungsgradverlust zu verringern, werden heutige Wandler-Automatikgetriebe häufig mit einer Wandler-Überbrückungskupplung ausgerüstet, die nach dem Anfahren bzw. dem Wechsel der Fahrstufen einen direkten mechanischen Kraftschluss ermöglicht.

Des Weiteren wird für die Erzeugung des Hydraulikdrucks durch die Öldruckpumpe Energie benötigt. Durch die in der eingelegten Stufe nicht benötigten leer mitlaufenden Lamellenkupplungen werden zusätzliche Schleppverluste erzeugt, da die Kupplungen geöffnet sind.[11] Durch diese Schleppverluste ist der Treibstoffverbrauch im Vergleich zu einem mit Schaltgetriebe ausgestatteten und ansonsten gleichen Fahrzeug höher. Moderne Automatikgetriebe bieten eine Wandlerüberbrückungskupplung schon ab dem ersten Gang, um diesen Mehrverbrauch an Kraftstoff zu reduzieren. Weitere Verbrauchsreduzierung ermöglicht die Standabkopplung, die das Getriebe bei Fahrzeugstillstand und betätigter Betriebsbremse in den Leerlauf schaltet und damit die Schleppverluste über den Wandler verhindert. Die Verbrauchsnachteile der Automatik zeigen sich in der Regel beim Normverbrauch – im Gegensatz zu den im normalen Straßenverkehr auftretenden Verbräuchen – kaum noch, da die Schaltpunkte auf die genormten Zyklen angepasst werden.

Ein Stufenwechsel erfolgt durch Abschalten eines Schaltelementes und gleichzeitiges Aufschalten des Schaltelementes für die nächsthöhere oder -niedrigere Stufe. Das zweite Schaltelement übernimmt also Stück für Stück das Drehmoment vom ersten, bis am Ende des Stufenwechsels das gesamte Drehmoment vom zweiten Schaltelement übernommen wird. Die Zeitspanne für diesen Schleifvorgang bewegt sich im zwei- bis dreistelligen Millisekundenbereich. Seit der Einführung elektronischer Getriebesteuerungen Ende der 1980er-Jahre wird, um das Getriebe vor Überlastung zu schützen und/oder eine bessere Schaltqualität zu erreichen, ein „Torque-down“-Request an das Motorsteuergerät übermittelt. Seit Ende der 1990er-Jahre erfolgt dies auch über den CAN-Bus. Das veranlasst die Motorsteuerung, das Antriebsmoment für die Dauer des Schaltvorgangs zu reduzieren. Ein weiteres Mittel zur Erhöhung der Schaltqualität ist, die Wandlerkupplung bei bestimmten Schaltsituationen zu öffnen. Die Gangwechsel zwischen den bis zu acht Übersetzungsstufen erfolgen sehr weich. Dass der Kraftfluss konstruktionsbedingt nicht vollständig unterbrochen wird, führt auch zum bekannten „Kriechen“ von Fahrzeugen mit gekuppeltem Automatikgetriebe (solange es sich nicht im Leerlauf befindet). Dieser Umstand kann beim Rangieren sehr vorteilhaft sein.

Mit der elektronischen Regelung (beispielsweise mit der EGS) werden auch weitere Effekte erzielt: Bei niedrigen Fahrstufen ist es inzwischen üblich, das Drehmoment des Motors zu begrenzen. Dadurch können die Kupplungen im Automatikgetriebe kleiner ausgelegt werden und der restliche Antriebsstrang muss für ein geringeres Drehmoment ausgelegt werden, was diesen leichter und preiswerter macht. Wenn gleichzeitig die Bremse und das Gaspedal getreten werden, verhindert die Steuerung, dass der Motor den Antriebsstrang verspannt, überlastet und den Wandler überhitzt. Beim Kick-down wird zusammen mit der ASR der Radschlupf kontrolliert. Beim Durchdrehen eines Rades erfolgt die Regelung durch einen Bremseneingriff. Drehen alle angetriebenen Räder durch, wird die Motorleistung begrenzt.

Die Kickdown-Funktion (Übergas) ist schon bei frühen Wandler-Automatikgetrieben mit rein hydraulischer Regelung zu finden. Über das bloße Vollgas hinaus wird dabei mittels Betätigung des Kickdownschalters am Anschlag des Gaspedals ein Signal an die Steuerung des Automatikgetriebes gesandt. Die Automatik schaltet in die Fahrstufe mit der bestmöglichen Beschleunigung und bringt den Motor auf hohe Drehzahlen. Zweckmäßig ist die Anwendung des Kickdowns vor allem bei Überholvorgängen.

Beim Rückschalten wird bei aufwendigeren Wandler-Automatikgetrieben das Prinzip der Mehrfach-Rückschaltung genutzt: Der Schaltvorgang findet gegebenenfalls im Wege der Sprungschaltung statt. So können auch mehrere Gangstufen übersprungen werden, um die maximale Beschleunigung abzurufen. Ein in modernen Fahrzeugen wählbares Schaltprogramm wird durch das Kickdown-Signal meist überlagert. Nach dem Beenden des Kickdown-Signals wird in die energetisch richtige Fahrstufe geschaltet.

Bedienweise[Bearbeiten]

Hauptartikel: Wählhebel

Üblich ist ein Wählhebel auf dem Fahrzeug-Mitteltunnel mit den Einstellmöglichkeiten

P: Park, Parkstellung mit mechanischer Verriegelung des Getriebes gegen Wegrollen
R: Reverse, Rückwärtsgang
N: Neutral, Leerlauf
D: Drive, Vorwärtsfahrt mit automatischer Gangwahl

In Automatikgetrieben wird üblicherweise diese Reihenfolge eingehalten, da beispielsweise in den USA gesetzliche Vorgaben dafür existieren.[12]

Manche Getriebe bieten weitere Fahrstufen an, oft ist ein manueller Modus möglich:

z. B. M oder S in Verbindung mit + und : Vorrichtung zum manuellen Schalten des Automatikgetriebes in einer zweiten Schaltgasse oder mit gesonderten Bedienelementen. Der Fahrer kann so eine manuelle Vorwahl treffen, um in die Getriebesteuerung einzugreifen und eine höhere oder niedrigere Fahrstufe wählen.

Sicherheit[Bearbeiten]

Fahrzeuge mit Wandler-Automatikgetriebe dürfen nach einem Ausfall – je nach Hersteller – nur über kurze Strecken oder gar nicht abgeschleppt werden, wenn die angetriebene Achse rollt. Ohne laufenden Motor wird bei den meisten Getrieben die Ölpumpe nicht angetrieben, so dass keine ausreichende Schmierung sichergestellt ist. Eine Ausnahme davon bilden Wandler-Automatikgetriebe mit einer zusätzlichen Sekundärölpumpe am Getriebeausgang, beispielsweise ältere Wandler-Automatikgetriebe von Mercedes-Benz.

In den 1980er-Jahren gab es Sicherheitsprobleme mit angeblichen „Selbstläufern“ bzw. Fahrzeugen, die ungewollt eine Fahrbewegung aufnahmen. In den USA erschienen TV-Berichte, in denen behauptet wurde, dass sich Fahrzeuge (vorwiegend wurden Audi-Modelle gezeigt) trotz Tritt auf die Bremse unerwartet in Bewegung gesetzt hätten. Eine abschließende Klärung wurde nicht erreicht, in der Folge haben sich jedoch einige Sicherheitsfunktionen eingebürgert:

  • Der Zündschlüssel kann nur in der Stellung „P“ abgezogen werden, das Einrasten der Lenkradsperre bei rollendem Fahrzeug wird so verhindert.
  • Der Motor kann nur in der Stellung „P“ und/oder „N“ gestartet werden. Ein Anrollen mit dem Start des Motors ist damit nicht möglich.
  • Um die Stellung „P“ zu verlassen, muss die Bremse betätigt werden. Bei einigen Herstellern gilt dies auch für die Stellung „N“ (nur bei Fahrzeugstillstand). Der Fahrer wird dadurch gezwungen, beim Start das richtige Pedal zu betätigen. So soll ein Verwechseln des Gaspedals mit der Bremse vermieden werden.

Mit der Verbreitung dieser Vorkehrungen in Neufahrzeugen ist das Problem der Selbstläufer verschwunden. Inzwischen haben weitere Sicherungen Einzug gehalten. So steigert bei einigen Automatiken der Motor kaum mehr seine Leistung, wenn gleichzeitig das Bremspedal getreten wird. Ein Verspannen des Antriebsstranges und eine Überhitzung des Wandlers werden dadurch ausgeschlossen.

Stufenlose Getriebe[Bearbeiten]

Hauptartikel: Stufenloses Getriebe
  • Continuously variable transmission (CVT) steht für Getriebe mit einem kontinuierlich variablen (begrenzten) Übersetzungsbereich, der dem von Schaltgetrieben entspricht. Nach dem DAF-Getriebe (Variomatic) gab es Versuche von Fiat, Subaru, Ford, Mini und Mercedes-Benz (unter der Bezeichnung Autotronic in der A-Klasse und B-Klasse), heute werden CVT-Getriebe unter der Bezeichnung Multitronic von Audi im A4 und größeren Modellen angeboten, unter der Bezeichnung Lineartronic von Subaru und einfach als CVT von Honda im Jazz und im Civic Hybrid. Außerdem haben die meisten Motorroller und neuerdings auch manche Motorräder CVT-Getriebe.
  • Infinitely Variable Transmission (IVT) hat einen 'unendlichen' Übersetzungsbereich, d. h. bei 1:∞ steht die Getriebeausgangswelle still, obwohl die Eingangswelle mit dem laufenden Motor verbunden ist, so dass bei dieser Bauform keine Anfahrkupplung erforderlich ist.

Ein Planetengetriebe als Summiergetriebe oder Verteilgetriebe ist zwar nicht stufenlos, jedoch kann eine Eingangswelle pseudo-stufenlos agieren, sofern die zweite Eingangswelle (des Summiergetriebes) entsprechend ausgleicht („die Gesamtübersetzung regelt“). Der zweite Eingang kann beispielsweise hydrostatisch (bei Traktoren), elektrisch (Toyota Prius) oder auch mechanisch (CVT) ausgeführt sein.

Vorteile[Bearbeiten]

Diese Getriebebauform bietet folgende Vorteile:

  • Entfall von Schaltstufen, dadurch
    • besserer Komfort, da Drehmoment- und Drehzahlwechsel kontinuierlich und nicht in Sprüngen erfolgt
    • keine Schaltpausen, da kein Gangwechsel ausgeführt wird
  • Die Kennlinie der Übersetzung kann nach verschiedenen Kriterien ausgelegt werden:
    • Verbrauch: der Motor läuft möglichst immer im Bereich des günstigsten Momentanverbrauchs und im Schleppbetrieb kann durch die Übersetzungsanpassung das kleinste Schleppmoment gewählt werden
    • Fahrdynamik: wenn maximale Beschleunigung erwartet wird, kann der Motor beim Beschleunigen immer unter maximaler Leistung laufen, die Fahrgeschwindigkeit wird alleine durch die Übersetzung des CVT angepasst
    • Geräusche: der Motor wird im jeweils leisesten Betriebsbereich gefahren
    • Abgasausstoß: der Motor wird im Betriebsbereich mit dem geringsten Schadstoffausstoß gefahren

Nachteile[Bearbeiten]

  • bei vielen Bauarten stark begrenzte Drehmomentkapazität
  • erhöhter technischer Aufwand, teilweise spezielle Ölsorten erforderlich
  • eingeschränkte Kundenakzeptanz

Die Drehmomentkapazität kann zum Beispiel mit einer Leistungsverzweigung verbessert werden. Dabei wird das stufenlose Getriebe mit einem summierenden oder verzweigenden Planetengetriebe kombiniert. Dadurch wird aber entweder die Spreizung der Übersetzung verringert, oder es verschlechtert sich der Gesamtwirkungsgrad der Getriebekombination.

Mit verbrauchsoptimierten Kennlinien kann der Nachteil des schlechteren Getriebe-Wirkungsgrades teilweise wettgemacht werden. Durch die Verbrauchsoptimierungen an den Motoren und breitere Drehzahlbänder für den günstigsten Kraftstoffverbrauch sind die Doppelkupplungsgetriebe derzeit die stärksten Konkurrenten der verbrauchsoptimierten CVT.

In der Praxis lassen sich einseitig optimierte Kennlinien mangels Kundenakzeptanz nicht realisieren, wodurch die theoretischen Vorteile gewissen Einschränkungen unterworfen sind.

Erfahrungsgemäß sind viele Fahrer nicht zufrieden, wenn das Fahrzeug beim Beschleunigen von Null auf 100 km/h stets mit der gleichen Motordrehzahl fährt („Gummibandeffekt“). Um dies zu vermeiden, bieten zahlreiche CVTs ein Schaltprogramm an, in dem sie mit festen Übersetzungsstufen arbeiten und so einen normalen Stufenautomaten imitieren.

Geschichte[Bearbeiten]

CVTs wurden serienmäßig zuerst in den niederländischen DAF-Automobilen unter der Bezeichnung Variomatic ab 1961 eingesetzt. Im Wesentlichen wird die Kraft im stufenlosen Getriebe per Keilriemen zwischen Keilscheiben mit variablem Abstand übertragen (siehe CVT).

Dieses Prinzip nach Van Doorne wurde inzwischen mit Schubketten aus Metallgliedern für höhere Drehmomente weiterentwickelt. Diese Getriebe wurden im Ford Fiesta, Fiat Uno und anderen verwendet. Audi kam um 2000 mit dem neuen Multitronic-Getriebe für leistungsstarke PKW auf den Markt. In ihm wirkt eine ziehende Wiegegelenkkette.

Auch der mit einem Hybridantrieb ausgestattete Toyota Prius hat ein stufenloses Automatikgetriebe, das allerdings über ein leistungsverzweigtes Planetengetriebe funktioniert, welches den Verbrennungsmotor mit zwei Motorgeneratoren verbindet. Die Getriebeübersetzung wird rein elektronisch durch die variable Ansteuerung der Motorgeneratoren vorgenommen. Ein separater Rückwärtsgang ist somit überflüssig. Des Weiteren entfällt ein Drehmomentwandler. Allerdings „kriecht“ auch der Prius, das heißt, er setzt sich aus dem Stand ohne Gasgeben in Bewegung. Das stufenlose Getriebe des Prius ist Bestandteil einer als Hybrid Synergy Drive bezeichneten Baueinheit aus Verbrennungsmotor, Planetengetriebe und zwei Motorgeneratoren.

Der mit einem Hybridantrieb ausgestattete Honda Civic Hybrid hat ein stufenloses CVT-Getriebe mit einem Drehmomentwandler als Anfahrelement.

Ähnlich wie das Getriebe des Prius funktionieren leistungsverzweigte hydrostatische Getriebe, die vor allem bei Traktoren verbreitet sind. Die Leistung wird über einen mechanischen Teil und einen stufenlosen hydrostatischen Teil verzweigt. Durch stufenloses Verstellen der Übersetzung im hydrostatischen Teil kann die sich ergebende Gesamtübersetzung geregelt werden. Um den Gesamtwirkungsgrad zu verbessern, haben solche Getriebe zum Teil noch zusätzliche Gangstufen. Ein Beispiel für eine solche Bauart ist das sogenannte „Variogetriebe“ des Traktorenherstellers Fendt.[13]

Verbreitung in Westeuropa[Bearbeiten]

Im internationalen Vergleich liegt die prozentuale Zahl der mit Automatikschaltung ausgerüsteten Personenkraftfahrzeuge in Westeuropa weit hinter Ländern wie den USA und Japan. Dies ist auf einige Nachteile gegenüber dem Schaltgetriebe zurückzuführen, unter anderem geringeres Beschleunigungsvermögen, wenn keine Wandlerüberhöhung vorliegt, geringere Endgeschwindigkeit, höheren Verbrauch, verzögertes Ansprechen zu Beginn eines Überholvorgangs, Aufpreis gegenüber dem Schaltgetriebe (nicht in allen Märkten üblich), andere Verkehrsverhältnisse und auf das mitunter unsportliche Image der Automatik, die in der klassischen Form des Wandlers mit Planetengetriebe selten im Motorsport anzutreffen ist.

Einer schwedischen Studie zufolge senkt die Verwendung eines Automatikgetriebes bei Senioren die Anzahl der Fahrfehler, bei Fahrern mittleren Alters besteht hingegen kein derartiger Zusammenhang.[14]

Zusätzliche Getriebe in Nutzfahrzeugen[Bearbeiten]

Vorschaltgetriebe[Bearbeiten]

Bei diesem Getriebe handelt es sich um eine Erweiterung eines herkömmlichen Getriebes. Dabei wird auf der Eingangswelle eine zusätzliche Vorgelegestufe angebracht. Dies hat den Effekt, dass man jeden Gang in zwei Stufen durchfahren kann. Es gibt also für jeden Gang eine kleine und eine große Stufe. Der einzelne Gang wird also aufgeteilt, oder, wie man sagt, „gesplittet“. Dies bringt diesem Getriebe den Namen „Splitter“ und der Gesamtkonstruktion den Namen „Split-Getriebe“ ein. Der Begriff „Vorschaltgetriebe“ deutet darauf hin, dass dieses Getriebe vor dem Basisgetriebe installiert ist. Häufiger wird jedoch die Vorschalt-Gruppe direkt im Getriebe untergebracht. Split-Getriebe finden sich in schweren Lkw. Sie werden üblicherweise über einen Schalter am Ganghebel bedient. Wird nur der Splitter betätigt oder wird von einem hohen in den nächsthöheren niedrigen Gang geschaltet, so spricht man von „einen halben Gang hochschalten“. Wird von einem niedrigen in den nächstkleineren hohen Gang geschaltet, so schaltet man „einen halben Gang herunter“.

Verteilergetriebe[Bearbeiten]

Ein Verteilergetriebe ist ein nach dem Basis-Getriebe verbautes Getriebe. Es kann bei Fahrzeugen verwendet werden, bei denen mehrere Achsen angetrieben werden (Allradfahrzeug). Das Getriebe verteilt die Antriebsleistung auf mehrere (bei einem 4×4-Fahrzeug zwei) Achsen über einen Abtrieb je Achse. Je nach Typ können die einzelnen Achsen zu- und abgeschaltet werden. Zusätzlich können im Verteilergetriebe auch Untersetzungen integriert sein – dies findet man häufig bei Geländewagen (Low-Range). Die Funktion des Verteilergetriebes ist nicht zu verwechseln mit Antriebsachsen, die einen integrierten Durchtrieb haben, wie beispielsweise schwere Lkw mit 6×4-Antrieb.

Nachschaltgetriebe[Bearbeiten]

Dieses Getriebe ist ein zwischen Basis-Getriebe und Kardanwelle verbautes zweistufiges Planetengetriebe. Hierdurch verdoppelt sich die Zahl der schaltbaren Gänge, oder auch, wie man englisch sagt, die „Range“ ([reindʒ], dt. Bereich). Daher heißen Konstruktionen, die ein solches Nachschaltgetriebe verwenden, auch „Range-Getriebe“, siehe auch Overdrive.

Man schaltet zunächst die Gänge des Basis-Getriebes und betätigt dann den „Range-Gruppen-Umschalter“. Dies erfolgt über einen Schalter am Ganghebel oder über das sogenannte „Überschlagen“. Bei ersterem wird vor dem Schaltvorgang der Schalter in die obere (große) Gruppe geschaltet, und dann der Ganghebel wieder in die Gasse des 1. Ganges geführt. Dies ist jedoch dann der 5. Gang (bei einem 4-Gang-Basisgetriebe) oder der 4. Gang (bei einem 3-Gang-Basisgetriebe). Beim „Überschlagen“ hat der Fahrer eine geteilte 8-Gang-Kulisse vor sich, die zwischen den Gassen des 3. und 4. Ganges und den des 5. und 6. Ganges unterbrochen ist. Hier führt man den Ganghebel nach dem Durchfahren des 4. Ganges in Neutral und schlägt mit dem Handballen den Hebel nach rechts. Hierdurch wird die Range-Gruppe gewechselt und der Hebel federt in Neutral nun nicht mehr nach rechts, sondern nach links. Er befindet sich aus Fahrersicht nun vor der Gasse des 5. oder 6. Ganges. Tatsächlich liegt der Hebel vor dem 1. oder 2. Gang des Basisgetriebes, doch durch den Gruppenwechsel wird daraus nun der 5. bzw. der 6. Gang. Man spricht hier auch von einer „Doppel-H-Schaltung“. Solche Getriebe finden sich in schweren Lkw.

Oftmals werden Vor- und Nachschaltgetriebe kombiniert, wodurch in schweren Lkw bis zu 16 Fahrstufen zur Verfügung stehen.

Hydraulische Getriebe[Bearbeiten]

Motoren mit sehr hoher Drehmomentabgabe, die aufgrund des oben angesprochenen schmalen sinnvoll nutzbaren Drehzahlbands ein Getriebe benötigen, sind zum Beispiel in Diesellokomotiven zu finden. Da sich bei konventionellen Getrieben beim Anfahren extrem hohe Anforderungen an eine Reibkupplung ergeben würden, werden im Bahnbetrieb häufig Strömungsgetriebe bzw. die „hydraulische Kraftübertragung“ benutzt. Bei den verwendeten Getrieben wird ein Drehmomentwandler zum Anfahren genutzt, die einzelnen Gänge werden ohne Zugkraftunterbrechung geschaltet, indem eine Strömungskupplung geleert wird, während eine andere gleichzeitig mit Öl befüllt wird. Zum Teil kommen zusätzlich noch Überbrückungskupplungen zum Einsatz, um die Energieverluste durch Schlupf gering zu halten. Ein Beispiel für dieselhydraulisch angetriebene Lokomotiven ist die deutsche DB-Baureihe 218.

Die häufiger verwendete Alternative ist jedoch die elektrische Kraftübertragung, bei der ein Generator angetrieben wird, der Strom für elektrische Fahrmotoren liefert.

Automatisierte Range-Splitter-Gruppen-Getriebe[Bearbeiten]

Moderne Lkw sind zum Teil mit automatisierten Getrieben nach der obigen Definition ausgerüstet.

Historie[Bearbeiten]

Entwickelt wurden diese elektronischen Schalthilfen für Nutzfahrzeuge zu Beginn der 1980er-Jahre mit dem Wunsch nach Kraftstoffeinsparung, Schonung der Antriebskomponenten und auch einer Entlastung des Fahrers, was jedoch bei Lkw-Fahrern in der Anfangszeit auf starke Ablehnung stieß.

1984 brachte Scania als erster Hersteller eine elektronische Schalthilfe unter der Bezeichnung CAG (Abk. f. Computer Aided Gearshift) auf den Markt. Der konventionelle Schalthebel wurde durch einen kleinen „Joystick“ auf dem Motortunnel ersetzt. Eine Elektronik, die verschiedene Fahrtparameter wie Geschwindigkeit und Motordrehzahl erfasste, gab dem Fahrer eine Schaltempfehlung per Display im Instrumentenbrett. Akzeptierte der Fahrer den vorgeschlagenen Gang, brauchte er nur die Kupplung zu betätigen. Bei abweichender Gangwahl schaltete er den gewünschten Gang mit Hilfe des Joysticks. Bei einem Ausfall der Anlage ließ sich der Kasten mit dem Wahlschalter zur Seite klappen und ein konventioneller Schaltstock einstecken, der im Fahrzeug mitgeführt wurde.

Etwa ein Jahr später zogen Mercedes-Benz als Hersteller eigener Nutzfahrzeuggetriebe sowie der Friedrichshafener Zulieferer ZF mit der Produktion eigener Schalthilfen nach. Mercedes präsentierte auf der IAA 1985 die Elektropneumatische Schaltung (EPS)[15], die im damals leistungsstärksten Modell 1644 serienmäßig angeboten wurde. Für kleinere Modelle sowie für den Reisebus O 303 war sie gegen Aufpreis erhältlich. Im Gegensatz zur CAG von Scania und einigen Modellen von ZF gab die EPS keine Schaltempfehlung, die Gangvorwahl musste daher immer durch ein Antippen des Hebels vor oder zurück (zum Hoch- oder Herunterschalten) erfolgen. Mit Vorstellung der Actros-Reihe folgte 1996 die „Telligent“-Schaltung (Kunstwort aus „Telematik“ und „Intelligent“), zunächst als halb-, später als vollautomatische Schaltung.

Zeitgleich bot ZF als Hersteller unter anderem von LKW-Getrieben halbautomatische Schalthilfen unter der Bezeichnung AVS (Abk. für Automatische Vorwählschaltung) an, die über Drucktasten, Schaltknauf oder einen Wippschalter am Lenkrad bedient werden konnte.

In der Handhabung sind jedoch alle anfänglichen Systeme weitgehend identisch: der Fahrer gibt über einen Schalter einen Schaltimpuls, welcher von der Elektronik und pneumatischen Stellzylindern umgesetzt wird.

Aktuell[Bearbeiten]

Heute ist man dazu übergegangen, dem Fahrer nahezu jegliche Schaltarbeit abzunehmen. Lediglich Leerlauf und Rückwärtsgang werden bei allen Schalthilfen über besondere Tasten oder Tastenkombinationen bedient. In manchen vollautomatisierten Schaltgetrieben ist kein Kupplungspedal mehr vorgesehen, im Actros ist es beispielsweise im Fußraum weggeklappt und kann optional eingesetzt werden. Da die Elektronik sämtliche Schalt- und Kupplungsvorgänge vollständig steuert, können hier auch unsynchronisierte Klauengetriebe eingesetzt werden, die in ihrer Bauform leichter und kompakter sowie im Betrieb schneller zu schalten sind. Diese vollautomatischen Schalthilfen dürfen jedoch nicht mit einem Automatikgetriebe mit Drehmomentwandler verwechselt werden.

Der Actros bietet Getriebe-Systeme an, bei denen per Vorwahl der nächstgünstigere oder auch manuell betätigte Gang gewählt werden kann. Der Gang wird von der Elektronik zunächst auf Plausibilität geprüft und dann beim Tritt auf das Kupplungspedal ggf. eingelegt. Vollautomatische Systeme, wie sie zuerst beim Iveco-Stralis und beim M.A.N-TGA eingesetzt wurden, verzichten sogar auf das Kupplungs-Pedal. Hier wird die Motordrehzahl des Triebstranges über elektronische Befehle an die Einspritzpumpe oder die Motorbremse angepasst, wodurch sich eine Synchronisierung des Getriebes erübrigt. Hybride Systeme, wie das Opticruise aus dem Hause Scania, benötigen eine Kupplungsbetätigung des Fahrers nur noch zum Anfahren oder Anhalten des Fahrzeuges.

Neuere Nutzfahrzeuge besitzen, z. B. aufgrund der moderneren Motor-Technologie, oft nur noch zwölf Gänge.[16]

Oft wird nur noch per Anzeige über den eingelegten Gang (1–12) informiert, der Fahrer kann aber in die Automatik aktiv eingreifen, indem er beispielsweise mit dem Lenk-Stock-Hebel (MAN) oder der Schaltkonsole (Daimler) manuell einen höheren oder niedrigeren Gang wählt. Die Schalt-Automatik beachtet auch Gaspedal-Änderungen (z. B. Kick-down).

Manche Automatik kann Gänge überspringen und/oder besitzt spezielle Modi wie ein Freischaukel- oder das Rangier-Programm.

Geräuscharme Gänge[Bearbeiten]

In DIN 70020 „Kraftfahrzeugbau; Allgemeine Begriffe, Festlegung und Erläuterung“ vom April 1954 sowie vom Dezember 1950 waren „geräuscharme Gänge“ definiert: „Über geräuscharm arbeitende Zahnradpaare laufende Gänge (also nicht der direkte Gang)“. Diese Festlegung wurde im Februar 1957 in DIN 70020 Blatt 3 „Allgemeine Begriffe im Kraftfahrzeugbau; Leistungen, Geschwindigkeiten, Beschleunigung, Verschiedenes“ übernommen.

Getriebe für andere Funktionen in Kraftfahrzeugen[Bearbeiten]

Auch an anderen Stellen außerhalb des Antriebsstrangs finden sich Getriebe: die Scheibenwischer werden von einem Elektromotor über Getriebe bewegt. Gleiches gilt auch bei elektrischen Fensterhebern. Auch die Sitzverstellung mittels Drehrädern zur Lehnenneigungseinstellung erfolgt über Getriebe. Auch Öffnungsmechanismen von Türen und Hauben oder die Übertragung einer Pedalbewegung auf ein Fahrzeugaggregat sind im maschinenbaulich-kinematischen Sinn ein Fahrzeuggetriebe: Die Schwenkbewegung des Pedals wird über eine Druckstange beispielsweise in eine lineare Bewegung oder eine Drehbewegung umgesetzt. Der flüssigkeitsgebundene Weg der Kraftübertragung zwischen Bremspedal und Radbremszylindern stellt ferner ein hydraulisches Getriebe dar.

Literatur[Bearbeiten]

  • Eckhard Kirchner: Leistungsübertragung in Fahrzeuggetrieben. Grundlagen der Auslegung, Entwicklung und Validierung von Fahrzeuggetrieben und deren Komponenten. Springer Verlag, Berlin 2007, ISBN 978-3-540-35288-4.
  • Harald Naunheimer, Bernd Bertsche, Gisbert Lechner: Fahrzeuggetriebe. 2. Auflage, Springer Verlag, Berlin 2007, ISBN 978-3-540-30625-2.
  • Hans Jörg Leyhausen: Die Meisterprüfung im Kfz-Handwerk Teil 1. 12 Auflage, Vogel Buchverlag, Würzburg 1991, ISBN 3-8023-0857-3.
  • Hans-Hermann Braess, Ulrich Seiffert: Vieweg Handbuch Kraftfahrzeugtechnik. 2. Auflage, Friedrich Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden 2001, ISBN 3-528-13114-4.
  • Karl-Heinz Dietsche, Thomas Jäger, Robert Bosch GmbH: Kraftfahrtechnisches Taschenbuch. 25. Auflage, Friedr. Vieweg & Sohn Verlag, Wiesbaden 2003, ISBN 3-528-23876-3.
  • Gert Hack: Autos schneller machen. 11. Auflage, Motorbuchverlag, Stuttgart 1980, ISBN 3-87943-374-7.
  • Hans Reichenbächer: Gestaltung von Fahrzeuggetrieben. (= Konstruktionsbücher, Band 15) Springer Verlag, Berlin 1955.
  • N. W. Worobjew: Kettengetriebe. 2. verbesserte und ergänzte Auflage, VEB Verlag Technik, Berlin 1953.

Weblinks[Bearbeiten]

Einzelnachweise[Bearbeiten]

  1. Werner Klement: Fahrzeuggetriebe, Hanser Verlag, München 2007, S. 74
  2. Karl-Ludwig Haken: Grundlagen der Kraftfahrzeugtechnik. Hanser Verlag, München 2008, S. 29.
  3. Eckhard Kirchner: Leistungsübertragung in Fahrzeuggetrieben. Springer Verlag, Berlin 2007, S. 1–6.
  4. Die Akte VW Käfer. ISBN 978-3-89365-761-2.
  5. a b Reif: Konventioneller Antriebsstrang und Hybridantriebe. Vieweg und Teubner Verlag, 2010, S. 102.
  6. Eckhard Kirchner: Leistungsübertragung in Fahrzeuggetrieben. Springer, 2007, S. 45–46.
  7. Klement: Fahrzeuggetriebe. Hanser Verlag, München 2007, S. 85.
  8. Vorlage:Internetquelle/Wartung/Datum nicht im ISO-FormatGernot Goppelt: Schalt-Blitz: das ASG im Lamborghini Aventador. In: Heise online. 22. April 2011, abgerufen am 5. Januar 2012.
  9. Porsche Technologie Lexikon. Porsche Doppelkupplungsgetriebe (PDK). www.porsche.com, abgerufen am 31. Mai 2011.
  10. a b Bosch: Kraftfahrtechnisches Taschenbuch. 2011, S. 564.
  11. Bosch: Kraftfahrtechnisches Taschenbuch. 2011, S. 565.
  12. Siehe Federal Motor Vehicle Safety Standard (FMVSS) Nr. 102 der National Highway Traffic Safety Administration (NHTSA). Speziell die Position von N zwischen D und R wie auch der Aufbau von Lenkstockschaltungen wird dort geregelt.
  13. Fendt: Variogetriebe - das Herzstück eines jeden Fendt Schleppers. Abgerufen am 24. August 2014.
  14. Senioren sollten Automatik fahren, auto.de, 20. Dezember 2011; Originalpublikation: Helena Selander, Ingrid Bolin, Torbjörn Falkmer, Does automatic transmission improve driving behavior in older drivers?, in: Gerontology, Jg. 58.2012, S. 181-187
  15.  Terwen, Stephan: Vorausschauende Längsregelung schwerer Lastkraftwagen. 1 Auflage. KIT Scientific Publishing, Karlsruhe 2010, ISBN 978-3-86644-481-2.
  16. Der neue Mercedes-Benz Actros setzt mit zahlreichen Optimierungen neue Maßstäbe im schweren Lkw-Segment (PDF). www.mobilitaet-verlag.ch, abgerufen am 31. Mai 2011.