Geostatistik

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Der Begriff Geostatistik bezeichnet bestimmte stochastische Methoden zur Charakterisierung und Schätzung von räumlich korrelierten georeferenzierten Daten, zum Beispiel Oberflächentemperaturen an verschiedenen Stellen eines Sees. Ziel ist es dabei, die punkthaft gemessenen Daten als Ausgangsbasis für eine räumliche Interpolation zu nutzen, also aus einer endlichen Zahl von Messwerten eine unendliche Zahl von Schätzwerten abzuleiten, die möglichst nahe an den real vorliegenden Werten liegen sollen.

Der Schätzwert für eine physikalische Größe (wie die Oberflächentemperatur) an einem Schätzort ist aufgrund der räumlichen Korrelation stärker von den Messwerten benachbarter als von solchen entfernter Messorte abhängig. Für die Abschätzung sind diese benachbarten Messwerte daher stärker zu berücksichtigen. Dabei unterscheidet man zwei Methoden, die nichtstatistischen und die statistischen Interpolationsverfahren, wobei Letztere auf einem geostatistischen Modell beruhen.

Um in Erfahrung zu bringen, bis zu welcher maximalen Entfernung (Reichweite) und in welchem Maße Messwerte von benachbarten oder weiter entfernten Messwerten abhängen, werden sogenannte experimentelle Semivariogramme modelliert: Für alle Entfernungen (als x-Werte), die jeweils zwei Messorte des Datensatzes zueinander haben, werden die Differenzen der jeweiligen Messwerte (als y-Werte) aufgetragen: Die wachsende Unähnlichkeit mit wachsender Entfernung spiegelt sich in der Zunahme der y-Werte mit steigenden x-Werten bis zu einem bestimmten Grenzwert wider. Diese Abhängigkeit wird mit einer Modellfunktion, zum Beispiel einer quadratischen Funktion, ausgedrückt.

Die Funktion, die aus der Analyse der Messwerte gewonnen wurde, ist die Grundlage für die nachfolgende Interpolation einer Verteilung von Schätzwerten im Raum in einem Verfahren, das als Kriging bezeichnet wird. Dabei erhalten die Messwerte je nach Nähe zum gesuchten Schätzwert in Abhängigkeit vom modellierten Semivariogramm unterschiedliche Gewichtungsfaktoren, mit denen sie in die Berechnung des Schätzwerts eingehen (Gegenbeispiel: arithmetischer Mittelwert als Schätzer: alle Messwerte erhalten ohne Unterschied dasselbe Gewicht).

Voraussetzung für die Interpolation ist, dass im Untersuchungsgebiet die Messwertverteilung homogen ist (Kriterium der Stationarität/Homogenität). Beispiel für Inhomogenität: der Aluminium-Gehalt von Gesteinen eines Untersuchungsgebiets, in dem durch Versatz an einer Störung zwei völlig unterschiedliche Gesteinseinheiten neben vorliegen und ohne Übergangszone aneinandergrenzen.

Für das Beispiel Oberflächentemperatur eines Sees wäre das Ergebnis des Krigings eine Verteilung von Schätzwerten in der Ebene, die zum Beispiel als Isothermen-Karte oder Oberflächenrelief ("fliegender Teppich") mit der Höhen-Achse als Temperatur-Achse visualisiert werden kann.

Weblinks[Bearbeiten]