Geothermie

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Erdwärme ist die im zugänglichen Teil der Erdkruste gespeicherte Wärme. Sie umfasst die in der Erde gespeicherte Energie, soweit sie entzogen und genutzt werden kann, und zählt zu den regenerativen Energien. Sie kann sowohl direkt genutzt werden, etwa zum Heizen und Kühlen im Wärmemarkt (Wärmepumpenheizung), als auch zur Erzeugung von elektrischem Strom oder in einer Kraft-Wärme-Kopplung.

Geothermie bezeichnet sowohl die geowissenschaftliche Untersuchung der thermischen Situation als auch die ingenieurtechnische Nutzung der Erdwärme.

Inhaltsverzeichnis

Ursprung geothermischer Energie[Bearbeiten]

Geothermische Anlage in Kalifornien
Geothermiekraftwerk in Island

Die bei ihrer Entstehung glutflüssige Erde ist innerhalb weniger Millionen Jahre erstarrt. Seit über vier Milliarden Jahren ist der radiale Temperaturverlauf im Erdmantel nur wenig steiler als die Adiabate. Dieser Temperaturgradient ist mit etwa 1 K/km viel zu klein, als dass Wärmeleitung einen wesentlichen Beitrag zum Wärmetransport leisten könnte. Vielmehr treibt der über die Adiabate hinausgehende Betrag des Temperaturgradienten die Mantelkonvektion an. Die im Vergleich zum Erdalter sehr rasche Konvektion – die ozeanische Kruste wurde und wird selten älter als 100 Millionen Jahre – wäre ohne Wärmequellen bald zum Erliegen gekommen. Das heißt, dass fühlbare Wärme aus der Zeit der Entstehung der Erde am heutigen Wärmestrom kaum beteiligt ist.

Der zeitliche Temperaturverlauf war zunächst von der Kinetik des radioaktiven Zerfalls dominiert. Kurzlebige Nuklide sorgten für ein Maximum der Manteltemperatur im mittleren Archaikum. Seit früher Zeit trägt auch Kristallisationswärme von der Grenze des langsam wachsenden, festen inneren Erdkerns und gravitative Bindungsenergie aus der damit verbundenen Schrumpfung des ganzen Kerns zur Mantelkonvektion bei.

Heute stammt immer noch der größere Teil der Wärmeleistung aus dem radioaktiven Zerfall der langlebigeren Nuklide im Mantel, 235U und 238U, 232Th und 40K. Der Beitrag jedes Nuklids wird berechnet aus der Zerfallsenergie und der Zerfallsrate; diese wiederum aus der Halbwertszeit und der Konzentration. Konzentrationen im Mantel sind der Messung nicht zugänglich, sondern werden aus Modellen der Gesteinsbildung geschätzt. Es ergibt sich eine Leistung aus radioaktivem Zerfall von etwa 20 bis 30 Terawatt oder 40 bis 50 kW/km2.[1] Seit kurzem werden Zerfallsraten mittels Neutrinodetektoren auch direkt gemessen, in Übereinstimmung mit dem bekannten Ergebnis, allerdings noch sehr ungenau, ±40 %.[1]

Wärmestrom aus dem Erdinneren[Bearbeiten]

Der vertikale Wärmetransport durch Mantelkonvektion endet unter der Erdkruste. Von dort wird Wärme zunächst zum größten Teil durch Wärmeleitung transportiert, was einen viel höheren Temperaturgradienten als im Mantel erfordert, in kontinentaler Kruste oft in der Größenordnung von 30 K/km, siehe geothermische Tiefenstufe. Zusammen mit der Wärmeleitfähigkeit ergibt sich die lokale Wärmestromdichte und global integriert eine Leistung von etwa 40 Terawatt.

Das ist nur etwa das Doppelte des Weltenergiebedarfs, was bedeutet, dass Erdwärmenutzung im großen Stil immer auf eine lokale Abkühlung des Gesteins hinausläuft.[2] Aufgrund der Wärmekapazität des Gesteins, und der damit verbundenen Menge der gespeicherten Wärme kann aber bei ausreichend großem Volumen die Abkühlung innerhalb der Nutzungsdauer gering bleiben und die Erdwärmenutzung somit nachhaltig sein. Der Weltenergiebedarf ist verglichen mit der in der Kruste gespeicherten Wärme klein. Diese lokale Abkühlung ihrerseits bewirkt dann eine Vergrößerung des Zuflussbereichs. Bei vorhandenen Aquiferen kann das effektiv genutzte Volumen von vornherein größer sein, da hier neben den Temperaturgradienten auch die Druckgradienten eine Rolle spielen. Diese finden sich z. B. in Grabenbrüchen (in Deutschland der Oberrheingraben) oder in tiefen Sedimentbecken. Solche Gebiete sind zunächst Gebieten vorzuziehen, in denen ein dichtes Gestein für die Konvektion erst erschlossen werden muss. Im Umfeld von Salzdiapiren kann durch deren hohe Wärmeleitfähigkeit Wärme aus einem großen Volumen zufließen.

Im oberflächennahen Grundwasser und in den oberflächennahen Gesteinsschichten wächst mit geringer werdenden Tiefen der Anteil an der Erdwärme, der letztlich aus der Sonneneinstrahlung stammt.

Einteilung der Geothermiequellen[Bearbeiten]

Wärme ist umso wertvoller, je höher das Temperaturniveau ist, auf dem sie zur Verfügung steht.

Hochenthalpie-Lagerstätten[Bearbeiten]

Land Anzahl der Vulkane theoretische
Dauerleistung
USA 133 23.000 MWel
Japan 100 20.000 MWel
Indonesien 126 16.000 MWel
Philippinen 53 6.000 MWel
Mexiko 35 6.000 MWel
Island 33 5.800 MWel
Neuseeland 19 3.650 MWel
Italien (Toskana) 3 700 MWel
(Quelle:[3])

Die weltweite Stromerzeugung aus Geothermie wird durch die Nutzung von Hochenthalpie-Lagerstätten, die Wärme bei hoher Temperatur liefern, dominiert. Dies sind geologische Wärmeanomalien, die oft mit aktivem Magmatismus einhergehen; dort sind mehrere hundert Grad heiße Fluide (Wasser/Dampf) in einer Tiefe von wenigen hundert Metern anzutreffen. Ihr Vorkommen korreliert stark mit aktiven oder ehemals aktiven Vulkanregionen. Es gibt aber auch Hochenthalpiefelder, die einen rein plutonitischen oder strukturgeologischen Hintergrund haben.

Abhängig von den Druck- und Temperaturbedingungen können Hochenthalpie-Lagerstätten mehr dampf- oder mehr wasserdominiert sein. Früher wurde der Dampf nach der Nutzung in die Luft entlassen, was zu erheblichem Schwefelgeruch führen konnte (Italien, Larderello). Heute werden die abgekühlten Fluide in die Lagerstätte reinjiziert (zurückgepumpt). So werden negative Umwelteinwirkungen vermieden und gleichzeitig die Produktivität durch Aufrechterhalten eines höheren Druckniveaus in der Lagerstätte verbessert.

Das heiße Fluid kann zur Bereitstellung von Industriedampf und zur Speisung von Nah- und Fernwärmenetzen genutzt werden. Besonders interessant ist die Erzeugung von Strom aus dem heißen Dampf. Hierfür wird das im Untergrund erhitzte Wasser genutzt, um eine Dampfturbine anzutreiben. Der geschlossene Kreislauf im Zirkulationssystem steht so unter Druck, dass ein Sieden des eingepressten Wassers verhindert wird und der Dampf erst an der Turbine entsteht (Flash-Verdampfung).

Niederenthalpie-Lagerstätten[Bearbeiten]

In nichtvulkanischen Gebieten können die Temperaturen im Untergrund sehr unterschiedlich sein. In der Regel sind jedoch tiefe Bohrungen notwendig; für die Stromerzeugung sind Temperaturen über 80 °C erforderlich. Für eine in Deutschland wirtschaftlich sinnvolle Nutzung müssen die Temperaturen des Fluids über 100 °C liegen.

Generell werden im Bereich der tiefen Geothermie drei Arten der Wärmeentnahme aus dem Untergrund unterschieden; welches der in Frage kommenden Verfahren zum Einsatz kommt, ist von den jeweiligen geologischen Voraussetzungen, von der benötigten Energiemenge sowie dem geforderten Temperaturniveau der Wärmenutzung abhängig. Es wird öfter zur Wärmegewinnung genutzt, denn da kann bereits bei geringern Vorlauftemperaturen die Wirtschaftlichkeit erreicht werden. Derzeit (2010) werden in Deutschland fast ausschließlich hydrothermale Systeme geplant. HDR-Verfahren befinden sich in den Pilotprojekten in Bad Urach (D), in Soultz-sous-Forêts im Elsass (F) und in Basel (CH) in der Erprobung. In Südost-Australien Cooperbecken ist seit 2001 ein kommerzielles Projekt im Gange (Firma Geodynamics Limited).

Hydrothermale Systeme[Bearbeiten]

Liegen entsprechende Temperaturen in einem Aquifer vor, so kann aus diesem Wasser gefördert, abgekühlt und reinjiziert werden: Im Untergrund vorhandene Thermalwässer werden an einer Stelle gefördert und an einer anderen Stelle in den gleichen natürlichen Grundwasserleiter injiziert. Zur Förderung reicht dabei ein Druckausgleich, das Thermalwasser an sich zirkuliert nicht im Untergrund. Hydrothermale Energie ist je nach vorliegender Temperatur zur Wärme- oder Stromgewinnung nutzbar. Die für hydrothermale Geothermie in Deutschland brauchbaren geologischen Horizonte können im Geothermischen Informationssystem ersehen werden.

Petrothermale Systeme[Bearbeiten]
Das Prinzip der Nutzung der Geothermie aus heißem dichtem Gestein (HDR)

werden oft auch als HDR-Systeme (Hot-Dry-Rock) bezeichnet: Ist das Gestein, in dem die hohen Temperaturen angetroffen wurden, wenig permeabel, so dass aus ihm kein Wasser gefördert werden kann, so kann dort ein künstlich eingebrachtes Wärmeträgermedium (Wasser oder auch CO2) zwischen zwei tiefen Brunnen in einem künstlich erzeugten Risssystem zirkuliert werden: zunächst wird Wasser mit (mindestens einer) Injektions- bzw. Verpressbohrung in das Kluftsystem eingepresst unter einem Druck, welcher so weit über dem petrostatischen Druck liegen muss, dass die minimale Hauptspannung in der jeweiligen Teufenlage überschritten wird, in das Gestein gepresst (hydraulische Stimulation oder Fracking); hierdurch werden Fließwege aufgebrochen oder vorhandene aufgeweitet und damit die Durchlässigkeit des Gesteins erhöht. Dieses Vorgehen ist notwendig, da sonst die Wärmeübertragungsfläche und die Durchgängigkeit zu gering wären. Anschließend bildet dieses System aus natürlichen und künstlichen Rissen einen unterirdischen, geothermischen Wärmeübertrager. Durch die zweite, die Produktions- oder Förderbohrung, wird das Trägermedium wieder an die Oberfläche gefördert.

Tatsächlich ist die Annahme, bei diesen Temperaturen und Tiefen trockene Gesteinsformationen vorzufinden, nicht korrekt. Aus diesem Grund existieren auch verschiedene andere Bezeichnungen für dieses Verfahren: u. a. Hot-Wet-Rock (HWR), Hot-Fractured-Rock (HFR) oder Enhanced Geothermal System (EGS). Als neutrale Bezeichnung wird der Begriff petrothermale Systeme verwendet.[4]

Tiefe Erdwärmesonden[Bearbeiten]

Hier wird vergleichsweise wenig Energie extrahiert: eine tiefe Erdwärmesonde ist ein geschlossenes System zur Erdwärmegewinnung. Sie besteht aus einer teilweise deutlich mehr als 1000 m tiefen Bohrung, in der ein Fluid zirkuliert. In der Regel ist das Fluid in einem koaxialen Rohr eingeschlossen: Im Ringraum der Bohrung fließt das kalte Wärmeträgerfluid nach unten, um anschließend in der dünneren eingehängten Steigleitung erwärmt wieder aufzusteigen. Derartige Erdwärmesonden haben gegenüber offenen Systemen den Vorteil, dass kein Kontakt zum Grundwasser besteht. Sie sind an jedem Standort möglich. Ihre Entzugsleistung hängt neben technischen Parametern von den Gebirgstemperaturen und den Leitfähigkeiten des Gesteins ab. Sie wird jedoch nur einige hundert kW betragen und somit wesentlich kleiner sein als bei einem vergleichbaren offenen System. Dies liegt daran, dass die Wärmeübertragungsfläche sehr klein ist, da sie nur der Mantelfläche der Bohrung entspricht.

Tiefe Erdwärmesonden wurden beispielsweise 2005 in Aachen (SuperC der RWTH Aachen)[5] und Arnsberg (Freizeitbad Nass) gebaut. Ende 2009 wurde in der Schweiz die Forschungsanlage Tiefen-EWS Oftringen[6] realisiert. Es handelt sich hierbei um eine 706 m tiefe konventionelle Doppel-U-Sonde, welche 2009 / 2010 im Sinne einer Direktheizung (also ohne den Einsatz mit einer Wärmepumpe) getestet wurde.[7]

Alternativ zur Zirkulation von Wasser (eventuell mit Zusätzen) in der Erdwärmesonde sind auch Sonden mit Direktverdampfern (Wärmerohre oder aus dem Englischen Heatpipes) vorgeschlagen worden. Als Arbeitsmittel kann entweder eine Flüssigkeit mit einem entsprechend niedrigen Siedepunkt verwendet werden, oder ein Gemisch beispielsweise aus Ammoniak und Wasser. Eine derartige Sonde kann auch unter Druck und dann beispielsweise mit Kohlendioxid betrieben werden. Heatpipes können eine höhere Entzugsleistung erreichen als konventionelle Sonden, da sie auf ihrer gesamten Länge die Verdampfungstemperatur des Arbeitsmittels haben können. Tiefe Erdwärmestichsonden bis 3000 m sind mit einem Luftpolsterisolierverfahren auszustatten, da hierbei eine erhebliche Wärmeenergiemenge eingespart wird.[8] Dies kann zu einer höheren Energieausbeute führen oder es kann eine geringere Bohrtiefe bei gleicher Leistung zur wesentlichen Kostenminderung beitragen. Das Isolierkappensystem ist einfach herzustellen und bietet eine dauerhafte Lösung dieses Problems.

Oberflächennahe Geothermie[Bearbeiten]

Oberflächennahe Geothermie bezeichnet die Nutzung der Erdwärme bis ca. 400 m Tiefe.

Aus geologischer Sicht ist jedes Grundstück für eine Erdwärmenutzung geeignet. Jedoch müssen wirtschaftliche, technische und rechtliche Aspekte beachtet werden.

Die erforderliche Erdwärmeanlage muss für jedes Gebäude passend dimensioniert werden. Sie hängt von der benötigten Bedarf an Wärmemenge, Wärmeleitfähigkeit und Grundwasserführung des Untergrundes ab.

Die Kosten einer Anlage richten sich nach der erforderlichen Größe der Anlage (z. B. Erdsondenmeter). Diese errechnen sich aus dem Energiebedarf des Hauses und den geologischen Untergrundverhältnissen.

Eine Erdwärmenutzung muss der Wasserbehörde angezeigt werden. Bei grundstücksübergreifender Erdwärmenutzung und bei Bohrtiefen von über 100 m muss das Berg- und Lagerstättenrecht beachtet werden.

Die Nutzung der Erdwärme erfolgt mittels Kollektoren, Erdwärmesonden, Energiepfählen oder Wärmebrunnenanlage.

Der Erdwärmetransport erfolgt über Rohrleitungssysteme mit einer zirkulierenden Flüssigkeit, welches in der Regel mit einer Wärmepumpe verbunden ist. Das beschriebene System kann auch kostengünstig (ohne Wärmepumpe) zur Kühlung genutzt werden.

Geothermie aus Tunneln[Bearbeiten]

Zur Gewinnung thermischer Energie aus Tunnelbauwerken wird auch austretendes Tunnelwasser genutzt, welches ansonsten aus Umweltschutzgründen in Abkühlbecken zwischengespeichert werden müsste, bevor es in örtliche Gewässer abgeleitet werden darf. Die erste solche bekannte Anlage wurde 1979 in der Schweiz beim Südportal des Gotthard-Straßentunnels in Betrieb genommen. Sie versorgt den Autobahnwerkhof von Airolo mit Wärme und Kälte. Weitere Anlagen sind zwischenzeitlich dazugekommen, welche vor allem Warmwasser aus Bahntunneln nutzen. Beim Nordportal des im Bau befindlichen Gotthard-Basistunnels tritt bereits heute Tunnelwasser mit Temperaturen zwischen 30 und 34 °C aus. Es soll bald in einem Fernwärmenetz genutzt werden. Das Tunnelwasser des neuen Lötschberg-Bahntunnels wird für eine Störzucht und für ein Tropenhaus verwendet.[9]

In Österreich wurde ein Verfahren entwickelt, um die Wärme aus Tunneln mittels eines Transportmediums zu nutzen, welches in eingemauerten Kollektoren zirkuliert. Für konventionell vorgetriebene Tunnel wurde das Prinzip unter dem Namen TunnelThermie bekannt. Durch die großen, erdberührten Flächen stellt diese relativ junge Technologie ein hohes Nutzungspotenzial besonders in innerstädtischen Tunnelbauwerken dar.

In Deutschland wurde ein Verfahren entwickelt, um Geothermie auch in maschinell vorgetriebenen Tunneln zu nutzen. Dazu sind Kollektoren in Betonfertigteile (sog. Tübbinge), die die Schale eines Tunnels bilden, eingebaut (Energietübbing genannt). Da innerstädtische Tunnel in schwierigen geologischen Verhältnissen häufig im Schildvortrieb aufgefahren werden, bietet der Energietübbing die Möglichkeit, auch entlang dieser Strecken das geothermische Potenzial des Erdreichs zu nutzen.[10]

Geothermie aus Bergbauanlagen[Bearbeiten]

Bergwerke und ausgeförderte Erdgaslagerstätten, die wegen der Erschöpfung der Vorräte stillgelegt werden, sind denkbare Projekte für Tiefengeothermie. Dies gilt eingeschränkt auch für tiefe Tunnelbauwerke. Die dortigen Formationswasser sind je nach Tiefe der Lagerstätte 60 bis 120 °C heiß, die Bohrungen oder Schächte sind oft noch vorhanden und könnten nachgenutzt werden, um die warmen Lagerstättenwässer einer geothermischen Nutzung zuzuführen.

Derartige Anlagen zur Gewinnung der geothermischen Energie müssen so in die Einrichtungen zur Verwahrung des Bergwerks integriert werden, dass die öffentlich rechtlich normierten Verwahrungsziele, das stillgelegte Bergwerk (§ 55 Absatz 2 Bundesberggesetz und § 69 Abs. 2 Bundesberggesetz) gefahrenfrei zu halten, auch mit den zusätzlichen Einrichtungen erfüllt werden.

In Heerlen, Czeladź, Zagorje ob Savi, Burgas, Nowoschachtinsk in Russland und Hunosa bei Oviedo befinden sich Pilotanlagen.[11]

Saisonale Wärmespeicher[Bearbeiten]

Geothermie steht immer, also unabhängig von der Tages- und Jahreszeit und auch unabhängig vom Wetter zur Verfügung. Optimal wird eine Anlage, in der das oberflächennahe Temperaturniveau genutzt werden soll, dann arbeiten, wenn sie auch zeithomogen genutzt wird. Dies ist zum Beispiel dann der Fall, wenn im Winter mit Hilfe einer Wärmepumpe das oberflächennahe Temperaturniveau von ca. 10 °C zum Heizen genutzt wird und sich dabei entsprechend absenkt und im Sommer dann dieses Reservoir zur direkten Kühlung benutzt wird. Beim Kühlen im Sommer ergibt sich dabei eine Erwärmung des oberflächennahen Reservoirs und damit dessen teilweise oder vollständige Regeneration. Im Idealfall sind beide Energiemengen gleich. Der Energieverbrauch des Systems besteht dann im Wesentlichen aus der Antriebsleistung für die Wärme- bzw. Umwälzpumpe.

Verstärkt wird diese Funktion, wenn Geothermie mit anderen Anlagen z. B. Solarthermie kombiniert wird. Solarthermie stellt Wärme vorwiegend im Sommer zur Verfügung, wenn sie weniger gebraucht wird. Durch Kombination mit Geothermie lässt sich diese Energie im Sommer in den unterirdischen Wärmespeicher einspeisen und im Winter wieder abrufen. Die Verluste sind standortabhängig, aber in der Regel gering.

Saisonale Speicher können sowohl oberflächennah, als auch tief ausgeführt werden. Sogenannte Hochtemperatur-Speicher (> 50 °C) sind allerdings nur in größerer Tiefe oder mit entsprechender Dämmung denkbar. Beispielsweise verfügt das Reichstagsgebäude über einen derartigen Speicher.

Nutzung von Erdwärme[Bearbeiten]

Die Geothermie ist global gesehen eine langfristig nutzbare Energiequelle. Mit den Vorräten, die in den oberen drei Kilometern der Erdkruste gespeichert sind, könnte im Prinzip rechnerisch und theoretisch der derzeitige weltweite Energiebedarf für über 100.000 Jahre gedeckt werden. Allerdings ist nur ein kleiner Teil dieser Energie technisch nutzbar und die Auswirkungen auf die Erdkruste bei umfangreichem Wärmeabbau sind noch unklar.

Bei der Nutzung der Geothermie unterscheidet man zwischen direkter Nutzung, also der Nutzung der Wärme selbst, und indirekter Nutzung, der Nutzung nach Umwandlung in Strom in einem Geothermiekraftwerk. Mit Einschränkungen sind zur Optimierung der Wirkungsgrade auch hier Kraft-Wärme-Kopplungen (KWK) möglich. Vor allem in dünn besiedelten Gegenden bzw. an weit von Siedlungen mit Wärmebedarf entfernten Kraftwerksstandorten lassen sich nur schwer KWK-Prozesse realisieren. Nicht an jedem Kraftwerksstandort werden sich Abnehmer für die Wärme finden lassen.

Direkte Nutzung[Bearbeiten]

Lindal-Diagramm in Listenform
Nutzungsart Temperatur
Einkochen und Verdampfen,
Meerwasserentsalzung
120 °C
Trocknung von Zementplatten 110 °C
Trocknung von organischem Material
wie Heu, Gemüse, Wolle
100 °C
Lufttrocknung von Stockfisch 90 °C
Heizwassertemperatur zur
Raumheizung (klassisch)
80 °C
Kühlung 70 °C
Tierzucht 60 °C
Pilzzucht, Balneologie,
Gebrauchtwarmwasser
50 °C
Bodenheizung 40 °C
Schwimmbäder, Eisfreihaltung,
Biologische Zerlegung, Gärung
30 °C
Fischzucht 20 °C
Natürliche Kühlung < 10 °C

Frühe balneologische Anwendungen finden sich

  • in den Bädern des Römischen Reiches,
  • im Mittleren Königreich der Chinesen und
  • bei den Ottomanen.

In Chaudes-Aigues im Zentrum Frankreichs existiert das erste historische geothermische Fernwärmenetz, dessen Anfänge bis ins 14. Jahrhundert zurückreichen.

Wärme wird heutzutage in vielfältiger Weise gebraucht (Wärmemarkt). Eine klassische Darstellung der dabei benötigten Temperaturen gibt das Lindal-Diagramm (Baldur Lindal, 1918–1997).

Heizen und Kühlen mit Erdwärme[Bearbeiten]

Für die meisten Anwendungen werden nur relativ niedrige Temperaturen benötigt. Aus tiefer Geothermie können häufig die benötigten Temperaturen direkt zur Verfügung gestellt werden. Reicht dies nicht, so kann die Temperatur durch Wärmepumpen angehoben werden, so wie dies meist bei der oberflächennahen Geothermie geschieht.

In Verbindung mit Wärmepumpen wird Erdwärme in der Regel zum Heizen und Kühlen von Gebäuden sowie zur Warmwasserbereitung eingesetzt (siehe Wärmepumpenheizung).

Eine weitere Nutzungsmöglichkeit ist die natürliche Kühlung, bei der Wasser mit der Temperatur des flachen Untergrundes, also der Jahresmitteltemperatur des Standortes, direkt zur Gebäudekühlung verwendet wird (ohne den Einsatz einer Wärmepumpe). Diese natürliche Kühlung hat das Potential, weltweit Millionen von elektrisch betriebenen Klimageräten zu ersetzen. Sie wird jedoch derzeit nur wenig angewendet.

Ebenfalls eine direkte Anwendung ist das Eisfreihalten von Brücken, Straßen oder Flughäfen. Auch hier wird keine Wärmepumpe benötigt, denn der Speicher wird durch Abführung und Einspeicherung der Wärme mit einer Umwälzpumpe von der heißen Fahrbahn im Sommer regeneriert. Dazu zählt auch das frostfreie Verlegen von Wasserleitungen. Die im Boden enthaltene Wärme lässt den Boden in Mitteleuropa im Winter nur bis in eine geringe Tiefe einfrieren.

Für die Wärmenutzung aus tiefer Geothermie eignen sich niedrigthermale Tiefengewässer mit Temperaturen zwischen 40 und 150 °C, wie sie vor allem im süddeutschen Molassebecken, im Oberrheingraben und in Teilen der norddeutschen Tiefebene vorkommen. Das Thermalwasser wird gewöhnlich aus 1000 bis 4500 Metern Tiefe über eine Förderbohrung an die Oberfläche gebracht, gibt den wesentlichen Teil seiner Wärmeenergie per Wärmeübertrager an einen zweiten, den „sekundären“ Heiznetzkreislauf ab. Ausgekühlt wird es anschließend über eine zweite Bohrung wieder mit einer Pumpe in den Untergrund verpresst, und zwar in die Schicht, aus der es entnommen wurde.

Stromerzeugung[Bearbeiten]

Direkte Nutzung der Erdwärme weltweit
(Stand: 2010, Quelle: Literatur/Statistik, 7.)
Nutzungsart Energie
TJ/a
Leistungsabgabe
Kapazität
MW
Wärmepumpen 214.236 TJ/a 35.236 MW
Schwimmbäder 109.032 TJ/a 6.689 MW
Raumheizung/
Fernwärme
62.984 TJ/a 5.391 MW
Gewächshäuser 23.264 TJ/a 1.544 MW
Industrie 11.746 TJ/a 533 MW
Aquakulturen 11.521 TJ/a 653 MW
Trocknung
(Landwirtschaft)
1.662 TJ/a 127 MW
Kühlen, Schnee-
schmelzen
2.126 TJ/a 368 MW
Andere Nutzung 956 TJ/a 41 MW
Total 438.071 TJ/a 50.583 MW

Zur Stromerzeugung wurde die Geothermie zum ersten Mal in Larderello in der Toskana eingesetzt. 1913 wurde dort von Graf Piero Ginori Conti ein Kraftwerk erbaut, in dem wasserdampfbetriebene Turbinen 220 kW elektrische Leistung erzeugten. Heute sind dort ca. 750 MW elektrische Leistung installiert. Unter der Toskana befindet sich Magma relativ dicht unter der Oberfläche. Dieses heiße Magma erhöht hier die Temperatur des Erdreiches soweit, dass eine wirtschaftliche Nutzung der Erdwärme möglich ist.

Bei der hydrothermalen Stromerzeugung sind Wassertemperaturen von mindestens 80 °C notwendig. Hydrothermale Heiß- und Trockendampfvorkommen mit Temperaturen über 150 °C können direkt zum Antrieb einer Turbine genutzt werden, letztere kommen in Deutschland jedoch nicht vor.

Schemazeichnung für die Stromgewinnung aus Geothermie

Lange Zeit wurde Thermalwasser daher ausschließlich zur Wärmeversorgung im Gebäudebereich genutzt. Neu entwickelte Organic-Rankine-Cycle-Anlagen (ORC) ermöglichen eine Nutzung von Temperaturen ab 80 °C zur Stromerzeugung. Diese arbeiten mit einem organischen Medium (z. B. Pentan), das bei relativ geringen Temperaturen verdampft[12] Dieser organische Dampf treibt über eine Turbine den Stromgenerator an. Die für den Kreisprozesse eingesetzten Fluide sind teilweise entzündlich oder giftig. Vorschriften zum Umgang mit diesen Stoffen müssen eingehalten werden. Eine Alternative zum ORC-Verfahren ist das Kalina-Verfahren. Hier werden Zweistoffgemische, so zum Beispiel aus Ammoniak und Wasser, als Arbeitsmittel verwendet.

Für Anlagen in einem kleineren Leistungsbereich (< 200 kW) sind auch motorische Antriebe wie Stirlingmotoren denkbar.

Stromgewinnung aus Tiefengeothermie ist grundlastfähig und steuerbar, in existierenden Anlagen werden of mehr als 8000 Betriebsstunden pro Jahr erreicht.

Stromerzeugung über Hochenthalpielagerstätten[Bearbeiten]

Die Stromerzeugung aus Geothermie findet traditionell in Ländern statt, die über Hochenthalpielagerstätten verfügen, in denen Temperaturen von mehreren hundert Grad Celsius in vergleichsweise geringen Tiefen (< 2000 m) angetroffen werden. Die Lagerstätten können dabei, je nach Druck und Temperatur, wasser- oder dampfdominiert sein. Bei modernen Förderungstechniken werden die ausgekühlten Fluide reinjiziert, so dass praktisch keine negativen Umweltauswirkungen, wie Schwefelgeruch, mehr auftreten.

Stromerzeugung über Niederenthalpielagerstätten[Bearbeiten]

In Niederenthalpielagerstätten, wie sie in Deutschland meist angetroffen werden, ist wegen der geringen Temperaturspreizung zwischen Vor- und Rücklauf der maximal mögliche energetische Wirkungsgrad systembedingt niedriger als in Hochenthalpielagerstätten. Sehr hohe energetische Wirkungsgrade werden auch hier durch gleichzeitige Nutzung von Wärme und der Gewinnung von Strom erreicht. Die richtigerweise anzuwendenden exergetischen Wirkungsgrade sind ohnehin deutlich höher.

Durch optimale Wahl des Arbeitsmittels (z. B. Kalinaprozess mit Ammoniak) versucht man den Abstand zwischen Vor- und Rücklauftemperatur effizienter zu nutzen. Dabei ist aber zu beachten, dass die Sicherheitsanforderungen für den Umgang mit Ammoniak anders sein können als bei der Nutzung verschiedener organischer Arbeitsmittel.

Der Eigenstromverbrauch, insbesonder zur Speisung der Umwälzpumpen im Thermalwasserkreislauf, in solchen Anlagen kann bis zu 25 Prozent der erzeugten Strommenge[13] betragen.

Geothermie weltweit[Bearbeiten]

Geothermie ist eine bedeutende erneuerbare Energie. Einen besonderen Beitrag zu ihrer Nutzung leisten hierbei die Länder, die über Hochenthalpielagerstätten verfügen. Dort kann der Anteil der Geothermie an der Gesamtenergieversorgung des Landes erheblich sein, zum Beispiel Geothermale Energie in Island.

Direkte Nutzung international[Bearbeiten]

Land Energieumsatz
pro Jahr
Leistungsabgabe
Jahresmittelwert
China 45.373 TJ/a 1,44 GW
Schweden 36.000 TJ/a 1,14 GW
USA 31.239 TJ/a 0,99 GW
Island 23.813 TJ/a 0,76 GW
Türkei 19.623 TJ/a 0,62 GW
Ungarn 7.940 TJ/a 0,25 GW
Italien 7.554 TJ/a 0,24 GW
Neuseeland 7.086 TJ/a 0,22 GW
Brasilien 6.622 TJ/a 0,21 GW
Georgien 6.307 TJ/a 0,20 GW
Russland 6.243 TJ/a 0,20 GW
Frankreich 5.196 TJ/a 0,16 GW
Japan 5.161 TJ/a 0,16 GW
Summe 208.157 TJ/a 6,60 GW
Quelle: Schellschmidt 2005[14]

Im Jahr 2005 waren zur direkten Nutzung von Geothermie weltweit Anlagen mit einer Leistung von 27.842 MW (fast 28 GW) installiert. Diese können Energie in der Größenordnung von 261.418 TJ/a (72.616 GWh/a) liefern, das entspricht einer mittleren Leistungsabgabe von 8,29 GW oder 0,061 % des Primärenergieverbrauchs der Welt. Bei einer Weltbevölkerung 2005 von 6,465 Mrd. Menschen entfallen daraus rechnerisch 1,28 Watt auf jeden Menschen (der durchschnittlich aber insgesamt 2.100 Watt Primärenergie verbraucht). Der Ausnutzungsgrad der installierten Leistung beträgt also etwa 30 % (diese Kennzahl ist wichtig für die überschlägige Kalkulation der Wirtschaftlichkeit von geplanten Anlagen, sie wird allerdings weitgehend durch die Verbraucherstruktur und weniger durch die Erzeuger, also die Wärmequelle bestimmt).

Länder mit Energieumsätzen größer als 5000 TJ/a zeigt die Tabelle.

Besonders hervorzuheben sind Schweden und Island. Schweden ist geologisch eher benachteiligt, hat aber durch eine konsequente Politik und Öffentlichkeitsarbeit diesen hohen Anteil bei der Nutzung erneuerbarer Energien vorwiegend zum Heizen (Wärmepumpenheizung) erreicht.

Auch in Island hat die Nutzung dieser Energie einen beträchtlichen Anteil an der Energieversorgung des Landes (ca. 53 %), vgl. Geothermale Energie in Island. Es ist inzwischen weltweit Vorreiter auf diesem Gebiet.

Das 1981 in Betrieb genommene und laufend erweiterte geothermische Kraftwerk Olkaria (121 MW, Potential 2 GW) im afrikanischen Rift Valley deckt mittlerweile 14 % des landesweiten Strombedarfs von Kenia. Die Erfolge dabei führten zu Geothermie-Projekten in Eritrea, Uganda, Tansania oder Äthiopien, die ebenfalls entlang des Ostafrikanischen Grabenbruchs liegen.[15]

Im Nahen Osten wird in den Vereinigten Arabischen Emiraten das erste Geothermie-Projekt realisiert. Es soll zur Versorgung der Ökostadt Masdar mit Energie zur Kühlzwecken dienen. Zunächst wurden zwei Probebohrungen in Tiefen von 2800 m und 4500 m gestartet.[16]

Stromerzeugung international[Bearbeiten]

Stromerzeugung aus Geothermie konzentriert sich traditionell auf Länder, die über oberflächennahe Hochenthalpie-Lagerstätten verfügen (meist Vulkan- oder Hot-Spot-Gebiete). In Ländern, die dies – wie zum Beispiel Deutschland – nicht haben, muss der Strom mit einem vergleichsweise niedrigen Temperaturniveau (Niederenthalpielagerstätte mit etwa 100–150 °C) erzeugt werden, oder es ist entsprechend tiefer zu bohren.

Weltweit ist geradezu ein Boom bei der Nutzung von Geothermie zur Stromerzeugung eingetreten. Die zum Ende des ersten Quartals 2010 installierte Leistung betrug 10.715 MW. Damit wird in den weltweit 526 geothermischen Kraftwerken 56 67.246 GWh/a grundlastfähige, elektrische Energie bereitgestellt.

In den letzten fünf Jahren wurde die Stromerzeugung stark ausgebaut. Auf einige Länder bezogen ergeben sich die in der linken Tabelle angegebenen Zuwächse für den Zeitraum 2005–2010.

Land (Auswahl) 2005–2010 neu installierte
elektrischeLeistung
MWe
USA 529
Indonesien 400
Island 373
Neuseeland 193
Türkei 62
El Salvador 53
Italien 52
Kenia 38
Guatemala 19
Deutschland 6
(Quelle:)[17]

Rechte Tabelle – Länder mit einem bedeutsamen Anteil der Geothermie an der Gesamtversorgung (Stand 2005):

Land Anteil an der
Stromerzeugung
in %
Anteil am
Wärmemarkt
in %
Tibet 30 30
San Miguel Island 25 keine Angabe
El Salvador 14 24
Island 19,1 90
Philippinen 12,7 19,1
Nicaragua 11,2 9,8
Kenia 11,2 19,2
Lihir Island 10,9 keine Angabe
Guadeloupe 9 9
Costa Rica 8,4 15
Neuseeland 5,5 7,1
(Quelle:)[18]

Niederenthalpie-Lagerstätten werden bisher weltweit wenig genutzt. Zukünftig könnten sie an Bedeutung gewinnen, da diese Nutzung weiter verbreitet möglich ist und nicht spezielle geothermische Bedingungen mit überdurchschnittlich hohen geothermischen Gradienten voraussetzt. Im November 2003 wurde das erste derartige Kraftwerk Deutschlands, das Geothermiekraftwerk Neustadt-Glewe, mit 0,23 Megawatt Leistung in Betrieb genommen. Im Jahr 2007 folgte mit der 3-Megawatt Anlage des Geothermiekraftwerkes Landau die erste industrielle Installation.

In Australien wird in Cooperbecken das erste rein wirtschaftliche Geothermiekraftwerk auf der Basis HFR (Hot Fractured Rock) erstellt. Bisher sind zwei Bohrungen auf über 4000 m Tiefe gebohrt und ein künstliches Risssystem erzeugt. Die Temperaturen sind mit 270 Grad höher als erwartet und auch die künstlich erzeugte Wasserwegsamkeit zwischen den Bohrungen ist besser als geplant.

Bezogen auf die Pro-Kopf-Nutzung der Erdwärme ist Island heute Spitzenreiter mit 664 MW (2011) installierter Gesamtleistung (Geothermale Energie in Island). Die USA führen dagegen bei den Absolutwerten mit einer installierten Gesamtleistung von 3093 MW (2010) vor den Philippinen mit 1904 MW (2010) und Indonesien mit 1197 MW (2010). (Quelle:)[19]

(Rechtliche) Situation in Deutschland[Bearbeiten]

Das Geothermiekraftwerk Neustadt-Glewe in Deutschland von innen

Geothermische Energie ist nach dem deutschen Bergrecht (Bundesberggesetz, BBergG, § 3 Abs. 3 Satz 2 Nr. 2b) ein bergfreier Rohstoff (bergfreier Bodenschatz). Sie gilt somit zunächst als herrenlos, wobei die jeweiligen Antragsteller ein Recht für Aufsuchung und Nutzung durch Verleihung seitens des Staates erlangen (wenn sie nicht städtebaulich genutzt wird, weil dann der Gewinnungsbegriff im § 4 Abs. 2 Bundesberggesetz nicht einschlägig ist). Dies bedeutet, dass das Eigentum an einem Grundstück sich nicht auf die Erdwärme erstreckt. Für die Aufsuchung der Erdwärme bedarf es also einer Erlaubnis nach § 7 BBergG und für die Gewinnung einer Bewilligung nach § 8 BBergG. Die meisten Anlagen oberflächennaher Geothermie können jedoch bislang nach dem § 4 BBergG ohne ein solches Verfahren erstellt werden, wenn die Nutzung auf dem eigenen Grundstück erfolgt, bei der genauen Abgrenzung herrscht die übliche föderale Vielfalt. Auf jeden Fall sind Anlagen, die in das Grundwasser reichen, nach dem Wasserrecht erlaubnispflichtig. Für Bohrungen, die länger als 100 Meter sind, ist außerdem ein bergrechtlicher Betriebsplan nötig.[20] Die Stadt Freiburg im Breisgau hat allerdings unter Anderem infolge der in Staufen nach einer Probebohrung aufgetretenen Geländehebungen sowie der in Basel durch eine solche ausgelösten Erdbeben ihre Auflagen für oberflächennahe Geothermie-Projekte auch für Bohrungen unter 100 m verschärft.[21]

Nach zumindest in zeitlichem Zusammenhang mit Erdwärmenutzungs-Sondierungen aufgetretenen Erdabsenkungen in Leonberg und Renningen (beide im baden-württembergischen Landkreis Böblingen) reduzierte das Landes-Umweltministerium die maximale Bohrtiefe für die oberflächennahe Geothermie; die Bohrungen dürfen nur mehr bis zur obersten Grundwasser führenden Schicht niedergebracht werden.[22][23]

Die geothermische Stromerzeugung steckt in Deutschland noch in den Anfängen. Unter anderem beschäftigt sich jedoch das Deutsche GeoForschungsZentrum in Potsdam intensiv mit diesem Thema.[24] Der Niedersächsische Forschungsverbund „Geothermie und Hochleistungsbohrtechnik – gebo“[25] verfolgt die Zielsetzung, neue Konzepte zur geothermischen Energiegewinnung in tiefen geologischen Schichten mit hoher Effizienz und Effektivität sowie geringerem geologischen und technischen Risiko zu entwickeln, um die bislang noch fehlende Wirtschaftlichkeit dieser regenerativen Energiequelle herzustellen. Zudem fördert das Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (BMU) zahlreiche Forschungsprojekte zur Effizienzsteigerung der tiefen Geothermie. Sieben Kraftwerke (in Unterhaching, Sauerlach und Dürnhaar bei München; Bruchsal, Landau in der Pfalz und Insheim im Oberrheingraben; Neustadt-Glewe in Norddeutschland) erzeugen in Deutschland Strom aus Tiefengeothermie. Das Kraftwerk in Landau arbeitet derzeit nicht, da eine undicht gewordene Wasserleitung zunächst abgedichtet werden muss.

Zahlreiche weitere Projekte sind im Bau oder nahezu fertiggestellt, so dass in den nächsten Jahren mit einem Anstieg beim Anteil der geothermisch erzeugten Strommenge zu rechnen ist.

Weit verbreitet ist hingegen die direkte energetische Nutzung von hydrothermaler Geothermie beim Betrieb von Fern- und Nahwärmenetzen. Eine Übersicht über die in Deutschland vorhandenen Anlagen hydrogeothermaler Nutzung ist in dem Verzeichnis Geothermischer Standorte[26] zu finden.

In Deutschland ist die direkte Nutzung oberflächennaher Geothermie (Wärmepumpenheizung) schon weit verbreitet, 2010 wurden 51.000 neue Anlagen installiert.[27] Insgesamt waren 2009 etwa 330.000 Anlagen installiert.[28] Erstmals flächig erforscht werden soll der Einsatz von oberflächennaher Geothermie im Erdwärmepark in Neuweiler im Nordschwarzwald; einem Baugebiet, in dem ausschließlich Erdwärme zu Zwecken der Gebäudeheizung und –kühlung verwendet wird. Hier soll im Rahmen eines Modellprojekts auch das Heizen bzw. Kühlen der vorhandenen Straßen erstmals umgesetzt werden. Oberflächennahe Geothermie wird auch in Bayern u. a. in der Umgebung von Ansbach untersucht,[29] wo es auch einen Ausbildungsschwerpunkt an der dortigen Fachhochschule gibt.

Für Deutschland ergibt sich laut der Zahlen des BMU für das Jahr 2004 das folgende Bild:

Der Energieerzeugung im Jahr 2004 aus der Geothermie von 5609 TJ/a (entsprechend einer mittleren Leistungsabgabe von 0,178 GW im Jahr 2004) steht ein Primärenergieverbrauch in Deutschland im selben Jahr von 14.438.000 TJ/a (entsprechend einer mittleren Leistung von 458 GW) gegenüber. Es wurden also im Jahr 2004 0,04 % des Primärenergieverbrauchs in Deutschland durch Geothermie gedeckt.

Die Geothermie-Branche rechnet in Deutschland mit einem jährlichen Wachstum von 14 Prozent. Im laufenden Jahr (Stand: März 2005) werden sich der Umsatz auf etwa 170 Millionen Euro und die Investitionen auf 110 Millionen Euro belaufen. Etwa 10.000 Menschen arbeiten bereits direkt oder indirekt für die geothermische Energieversorgung (Quelle, siehe Literatur/Statistik, 2.).

Direkte Nutzung[Bearbeiten]

Im Bereich der tiefen Geothermie gibt es in Deutschland zurzeit 30 Installationen mit Leistungen über 2 MW. Diese leisten zusammen 105 MW (Quelle, siehe Literatur/Statistik, 4.). Die meisten dieser Einrichtungen stehen im

Der norddeutsche Raum verfügt geologisch bedingt über ein großes Potential geothermisch nutzbarer Energie in thermalwasserführenden Porenspeichern des Mesozoikums in einer Tiefe von 1000 bis 2500 m mit Temperaturen zwischen 50 °C und 100 °C. Die Geothermische Heizzentrale (GHZ) in Neubrandenburg war bereits in der DDR eines der Pilotprojekte zur Nutzung der Geothermie.

Das Molassebecken in Süddeutschland (Alpenvorland) bietet günstige Voraussetzungen für eine tiefengeothermische Nutzung. Zahlreiche balneologische Erschließungen in Baden-Württemberg (Oberschwaben) und Bayern (Bäderdreieck) bestehen bereits seit einigen Jahrzehnten. Darüber hinaus existierten in Südbayern im April 2013 vierzehn groß-energetische Nutzungen (geothermisch betriebene Fernwärmenetze in Simbach-Braunau, Straubing, Erding, Unterschleißheim, Pullach, München-Riem, Unterhaching, Unterföhring, Aschheim, Ismaning, Grünwald, Waldkraiburg, Poing, Garching) und zahlreiche weitere sind in Planung oder im Bau (z.B. Taufkirchen, Kirchweidach). Das Thermalwasser stammt aus einer Kalksteinschicht (vor allem Kluft- Karstgrundwasser) des Oberjura (Malm) an der Basis des nordalpinen Molassetrogs. Diese Gesteine treten entlang der Donau an der Erdoberfläche in Erscheinung und tauchen in Richtung Süden am Alpenrand auf bis über 5000 m unter die Erdoberfläche ab. Dort sind auch Temperaturen höher als 140 °C zu erwarten.

Der Oberrheingraben bietet deutschlandweit besonders gute geologisch-geothermische Voraussetzungen (u. a. hohe Temperatur, Wärmefluss, Struktur im Untergrund). Allerdings sind die Thermalwässer im Oberrheingraben reich an gelösten Inhaltsstoffen, was hohe Anforderungen an die Anlagentechnik stellt. An verschiedenen Standorten sind Projekte in Betrieb, in Planung und im Bau. Für viele Regionen sind bereits Konzessionen erteilt worden.

Untersucht wird zudem beispielsweise in Nordrhein-Westfalen, ob in das Fernwärmenetz der Ruhr-Universität und der Hochschule Bochum Erdwärme eingespeist werden kann. Auch Gebäude der RWTH Aachen sollen mittels Geothermie beheizt werden (Tiefe Erdwärmesonde).

In Bad Urach (Schwäbische Alb) konnte ein langjährig betriebenes und weit fortgeschrittenes Projekt aus finanziellen Gründen nicht vollendet werden.[30]

Baden-Württemberg hat genau wie Nordrhein-Westfalen ein Förderprogramm für Erdwärmesonden-Anlagen für kleine Wohngebäude aufgelegt, mit einer Förderung der Bohrmeter, siehe Weblinks.

Zusätzlich gibt es in Deutschland mehr als 50.000 oberflächennahe Geothermieanlagen, bei denen Wärmepumpen zum Anheben der Temperatur eingesetzt werden. Diese haben zusammen eine Leistung von mehr als 500 MW. Im Vergleich zu Schweden, Schweiz oder Österreich ein eher geringer Marktanteil. Im Jahr 2000 betrug er in Deutschland 2 bis 3 %, in Schweden 95 %, und in der Schweiz 36 % (Siehe auch Wärmepumpenheizung).

Stromerzeugung[Bearbeiten]

Das erste geothermische Kraftwerk in Deutschland ist 2004 in Mecklenburg-Vorpommern als Erweiterung des bereits 1994 errichteten geothermischen Heizwerks in Betrieb genommen worden. Die elektrische Leistung des Geothermiekraftwerks Neustadt-Glewe beträgt bis zu 230 kW. Aus einer Tiefe von 2250 Metern wird etwa 97 °C heißes Wasser gefördert und zur Strom- und Wärmeversorgung genutzt. Im Jahr 2004 betrug die erzeugte Strommenge 424 000 Kilowattstunden (Quelle: AGEE-Stat/BMU); angestrebt werden jährlich ca. 1,2 Mio. Kilowattstunden (entspricht einer mittleren Leistung von 48 kW bzw. 137 kW). Die Inbetriebnahme stellt einen Meilenstein in der Entwicklung der geothermischen Stromerzeugung in Deutschland dar. Viele Kraftwerke sind im Bau oder in der Planung, die meisten davon am Oberrhein und im oberbayerischen Molassebecken. Die Bergämter haben dort zahlreiche Aufsuchungsgenehmigungen vergeben (bis 2007 über 100).

Die für die Stromerzeugung erforderlichen Wärmereservoirs mit hohen Temperaturen sind in Deutschland nur in großer Tiefe vorhanden. Die für den Betrieb erforderlichen Temperaturen zu erschließen ist mit einem hohen finanziellen Aufwand verbunden. Geologische und bohrtechnische Erschließungsrisiken müssen dabei im Verhältnis zum finanziellen Aufwand abgewogen werden. Forschungsarbeiten zur Nutzung tief liegender bzw. weitgehend wasserundurchlässiger Gesteine laufen und versprechen die Möglichkeiten zur Stromerzeugung weiter zu erhöhen. Eine Studie des Deutschen Bundestages gibt das Potential der Stromproduktion mit 1021 Joule an.

Geplante und realisierte Geothermieanlagen (Stromerzeugung) in Mitteleuropa[31])
Geoth. Leistung
in MW
Elektr. Leistung
in MW
Temperatur
in °C
Förderrate
in m³/h
Bohrtiefe
in m
Geplante Inbetriebnahme
Jahr
Deutschland
Groß Schönebeck Forschungsprojekt 10 1,0 150 < 50 4.294 2008
Neustadt-Glewe 10 0,21 98 119 2.250 Kraftwerksbetrieb seit 2003–2009, Stromerzeugung 2009 eingestellt
Bad Urach (HDR-Pilotprojekt) 6–10 ca. 1,0 170 48 4.500 Projekt abgebrochen wg. Auslauf der Finanzierung / bohrtechn. Probleme
Bruchsal 4,0 ca. 0,5 118 86 2.500 Im Kraftwerksbetrieb seit 2009
Landau in der Pfalz 22 3 159 70 3.000 Im Probebetrieb seit 2007. Zeitweise eingestellt wegen leichter Beben. Wiederaufnahme mit reduziertem Pumpendruck.[4].
Insheim 4–5[32] >155 3.600 Im Kraftwerksbetrieb seit November 2012
Brühl 40 5–6 150 3.800[33] (Bohrarbeiten wg. Klage derzeit unterbrochen; Klage abgewiesen),[34] GT1 erfolgreich getestet
Schaidt >155 >3.500 Die 2010 erteilten bergrechtlichen Zulassungen sind ausgelaufen. Die Zukunft ist offen.[35]
Offenbach an der Queich 30–45 4,8–6,0 160 360 3.500 gestoppt wg. Bohrlochinstabilität
Riedstadt 21,5 ca. 3,0 250 3.100 unbekannt
Speyer[36] 24–50 4,8–6,0 150 450 2.900 2005 aufgegeben,[37] weil Erdöl statt Wasser gefunden wurde (drei Bohrungen im Probebetrieb)
Simbach-Braunau 7 0,2 80 266 1.900 Fernwärme seit 2001, ORC-Kraftwerk seit 2009 im Betrieb
Unterhaching 40 3,4 122 > 540 3.577 seit 2008 im Betrieb
Sauerlach ca. 80 ca. 5[38] 140 > 600 > 5.500 seit 2013 im Betrieb
Dürrnhaar ca. 50 ca. 5,0 135 > 400 > 4.000 seit 2013 im Betrieb
Mauerstetten 120–130 4.100 nahezu kein Tiefengrundwasser gefunden; 2014 hydraulische Stimulation genehmigt[39]
Kirchstockach 50 5 130 450 > 4.000 seit 2013 im Betrieb
Laufzorn (Oberhaching) 50 5 130 470 > 4.000 2014 geplant (Bohrarbeiten erfolgreich beendet)
Kirchweidach 120 470 > 4.500 Fokussierung auf Wärme für Gewächshäuser & Fernwärme[40]
Taufkirchen 120 470 > 3.000 voraussichtlich 2014 (Bohrarbeiten erfolgreich beendet)
Traunreut 12 5,5 120 470 > 5.000 voraussichtlich 2015? derzeit Ausbau des Fernwärmenetzes
Geretsried 40 5,3 145 360 > 4.500 Bohrarbeiten derzeit unterbrochen, 1. Bohrung mit zu geringer Schüttung[41][42]
Bernried am Starnberger See 150 2 × 450 > 4.500 in Vorbereitung,[42] (Bohrbeginn 2014 geplant)
Weilheim in Oberbayern 150 >500 > 4.500 (Bohrbeginn 2014 geplant)
Holzkirchen 150 450 > 5.500 (Bohrbeginn 2014 geplant)
Neuried (Baden) 3,8[43] (Bohrbeginn 2014 geplant)
Österreich
Altheim (Oberösterreich) 18,8 0,5 105 ca. 300–360 2.146 Im Kraftwerksbetrieb seit 2000
Bad Blumau 7,6 0,18 107 ca. 80–100 2.843 Im Kraftwerksbetrieb seit 2001
Aspern 40 150 360 5.000 Bohrarbeiten abgebrochen[44]
Frankreich
Soultz-sous-Forêts[45] 12,0 2,1 180 126 5.000 Testbetrieb seit 2008
Schweiz
Basel 17,0 6,0 200 5.000 Projekt eingestellt wegen Beben[46]
St. Gallen ca. 30 3-5 150–170 ca. 4.000 Projekt unterbrochen, hoher Gaszutritt und erhöhte Seismizität beim Fördertest[47]

Staatliche Fördermaßnahmen[Bearbeiten]

Erneuerbare-Energien-Gesetz (EEG)[Bearbeiten]

Durch die Novellierung des EEG (Erneuerbare-Energien-Gesetz) zum 1. Januar 2012 wird die geothermische Stromerzeugung die eingespeiste Kilowattstunde deutlich höher gefördert als zuvor. Es erfolgt eine Integration von KWK- und Frühstarter-Bonus in die Grundvergütung, so dass diese von 16 auf 23 ct/kWh steigt. Die Grundvergütung beträgt jetzt mit einer zusätzlichen Erhöhung von 2 ct/kWh 25 ct/kWh. Dazu kommt ein Technologie-Bonus für petro-thermale Projekte von 5 ct/kWh. Diese Höhe der Vergütungen gilt für alle bis einschließlich 2017 in Betrieb gehenden Anlagen. Ab dem Jahr 2018 sinken die jeweils für neue Anlagen (entsprechend den Zeitpunkten der Inbetriebnahmen) geltenden Vergütungssätze jährlich um 5 % (Degression). Bisher sollte diese Absenkung bereits ab 2010 jährlich 1 % betragen. Weiterhin bleiben die Vergütungen einer Anlage über den Vergütungszeitraum (20 bis knapp 21 Jahre) konstant. Die Einspeisevergütung wird für die Brutto-Stromproduktion der Anlage in Anspruch genommen. Dies entspricht einer EEG-einheitlichen Regelung und gilt für alle Formen erneuerbarer Stromerzeugung. Der Eigenenergiebedarf beträgt bei deutschen Geothermiekraftwerken ca. 30% der Bruttostromproduktion (größter Verbraucher sind die Förderpumpen).

Marktanreizprogramm des BMU[Bearbeiten]

Anlagen der tiefen Geothermie werden aus dem MAP (Marktanreizprogramm des Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit) durch zinsverbilligte Darlehen mit Tilgungszuschüssen gefördert. Förderfähig sind:

  • Die Errichtung der Tiefengeothermieanlage („Anlagenförderung“)
  • Die Realisierung der Förder- und Injektionsbohrung („Bohrkostenförderung“) sowie unvorhergesehene Mehrkosten gegenüber der Bohrplanung („Mehraufwendungen“)
  • Die Reduzierung des Fündigkeitsrisikos durch Haftungsfreistellungen für bis zu 80 % der Bohrkosten („Kreditprogramm Fündigkeitsrisiko“)
  • Die Errichtung von Wärmenetzen („Wärmenetze“)

Die KfW kann daraus Darlehen pro Projekt in einer Höhe von bis zu 80 % der Bohrkosten vergeben. Diese Darlehen werden im Fall der Nichtfündigkeit haftungsfrei gestellt, d. h. sie müssen vom Kreditnehmer ab diesem Zeitpunkt nicht weiter zurückgezahlt werden. Das „KfW Sonderprogramm“ für allgemeine Projektfinanzierungen, wie u. a. Geothermieprojekte, refinanziert Banken mittels KfW-Krediten bis zu einem Kreditbetrag von i.d.R. 200 Mio. Euro pro Projekt.

Aufgrund der mit der Bohrung verbundenen hohen Investitionskosten und Fündigkeitsrisiken, soweit diese über die o.g. Haftungsfreistellung hinausgehen, besteht bei Tiefengeothermieprojekten ein relativ hohes Anfangshemmnis. Dies erschwert die Finanzierung. Die relativ lange Projektentwicklungszeit und die damit verbundene Dauer des Eigenkapitaleinsatzes verteuert die Finanzierung.

Ökonomische Aspekte[Bearbeiten]

Die geringe Nutzung der überall vorhandenen und vom Energieangebot her kostenlosen Geothermie liegt darin begründet, dass sowohl der Wärmestrom mit ≈ 0,06 Watt/m² als auch die Temperaturzunahme mit der Tiefe mit ≈ 3 K/100 m in den zugänglichen Teilen der Erdkruste, von besonderen Standorten abgesehen, so gering sind, dass eine Nutzung zu Zeiten niedriger Energiepreise nicht wirtschaftlich war. Durch das Bewusstwerden des CO2-Problems und der absehbaren Verknappung der fossilen Energieträger setzte eine stärkere geologische Erkundung und technische Weiterentwicklung der Geothermie ein.

Da die eigentliche Energie, die Geothermie, kostenlos ist, wird die Wirtschaftlichkeit einer Geothermienutzung vor allem durch die Investitionskosten (Zinsen) und Unterhaltskosten der Anlagen bestimmt.

Unter den gegenwärtigen politischen Rahmenbedingungen (Erneuerbare-Energien-Gesetz) ist eine Wirtschaftlichkeit bei größeren Geothermieanlagen auch in Deutschland in vielen Gebieten, wie zum Beispiel in Oberbayern, Oberrheingraben und Norddeutsches Becken, erreichbar.

Grundsätzlich sind größere Geothermieanlagen (über 0,5 MW und mit einer Tiefe von mehr als 500 m) immer mit gewissen Fündigkeitsrisiken behaftet, da die tieferen Erdschichten eben nur punktuell und oft in geringem Ausmaß erkundet sind. Dabei lassen sich die anzutreffenden Temperaturen meist recht gut prognostizieren. Die bei hydrothermalen Anlagen aber besonders relevanten Schüttmengen sind jedoch häufig nicht gut vorhersehbar. Neuerdings werden allerdings Risikoversicherungen dazu angeboten. Zur Minimierung des Fündigkeitsrisikos wurde das Geothermische Informationssystem (gefördert vom BMU) erstellt.

Die oberflächennahe Erdwärmenutzung für die Heizung von Gebäuden mittels einer Wärmepumpe ist bereits in vielen Fällen konkurrenzfähig. Wärmepumpenheizungen bestehen in der Regel aus einer oder mehreren Erdwärmesonde(n) und einer Wärmepumpe bzw. mehreren parallel geschaltet. 2004 wurden in Deutschland etwa 9.500 neue Anlagen errichtet, 2006 waren es schon 28.000, der Bestand übersteigt 130.000. In der Schweiz waren es 2004 rund 4.000 neue Anlagen mit Erdwärmenutzung. Der Marktanteil in Deutschland ist im Gegensatz zu Ländern wie Schweden, der Schweiz oder Österreich jedoch noch gering.

Bei den Betriebskosten spielt die Beständigkeit der Anlagen gegen Verschleiß (z. B. bewegte Teile einer Wärmepumpe oder eines Stirlingmotors) eine Rolle. Bei offenen Systemen kann Korrosion durch aggressive Bestandteile im wärmetransportierenden Wasser entstehen (alle Teile in der Erde und die Wärmeübertrager). Diese früher bedeutenden Probleme sind heute jedoch technisch weitestgehend gelöst.

Ökologische Aspekte[Bearbeiten]

Energiepotential[Bearbeiten]

Die Geothermie wird zu den regenerativen Energiequellen gezählt, da ihr Potenzial als sehr groß und nach menschlichem Ermessen unerschöpflich gilt. Der kumulierte Energieaufwand (KEA, auch: graue Energie) von Geothermie liegt in dem Bereich von 0,12 kWh_{PE}/kWh_{th}.[48] Theoretisch würde allein die in den oberen drei Kilometern der Erdkruste gespeicherte Energie ausreichen, um die Welt für etwa 100.000 Jahre mit Energie zu versorgen. Allerdings ist nur ein sehr kleiner Teil dieser Energie technisch nutzbar. Im Arbeitsbericht 84 des Büros für Technikfolgenabschätzung beim Deutschen Bundestag[49] wurde 2003 ein jährliches technisches Angebotspotenzial aus geothermischer „Stromerzeugung von ca. 300 TWh/a für Deutschland ermittelt, was etwa der Hälfte der gegenwärtigen Bruttostromerzeugung entspricht“. Die Berechnungen in der Studie ermitteln einen nachhaltigen Nutzungszeitraum von eintausend Jahren für diese Form von 50 Prozent geothermischer Gesamtstromerzeugung. Entscheidenden Einfluss bei der Realisierung einer nachhaltigen Nutzung hat das Wärmeträgerfluid (Wasser oder Dampf). Wird die Wärme über das Fluid im großen Maßstab dem Untergrund entzogen, so wird, in Abhängigkeit von den geologischen Rahmenbedingungen, regional mehr Wärme entzogen, als durch den natürlichen Wärmestrom zunächst „nachfließen“ kann. So gesehen wird die Wärme zunächst „abgebaut“. Nach Beendigung der Nutzung werden sich jedoch die natürlichen Temperaturverhältnisse nach einer gewissen Zeit wieder einstellen. Das Entnahmeszenario der Studie berücksichtigt die Wärmeströme in der Potenzialberechnung. Geothermie ist wie Biomasse oder Wasserkraft bei der Stromerzeugung und nicht wärmegesteuerten Kraftwerken grundlastfähig.

Regeneration des Wärmereservoirs[Bearbeiten]

Da bei Geothermiekraftwerken in Regionen mit geringem oder durchschnittlichem Wärmestrom mehr Wärmeenergie aus der Erdkruste entnommen wird, als natürlich nachströmen kann, wird die in der Erdkruste gespeicherte Energie abgebaut. Die Nutzungsdauer eines Kraftwerks bzw. Standortes ist also je nach Rate der entnommenen Energie begrenzt. Allerdings regeneriert sich das Wärmereservoir durch den natürlichen Wärmestrom nach einiger Zeit. Die Regeneration eines Wärmereservoirs im Bereich der Kaltwasserinjektion richtet sich sehr stark nach den geologischen Rahmenbedingungen. Wichtig ist dabei, ob die Wärme ausschließlich über Wärmeleitung von unten nachgeführt wird oder zusätzlich Wärme über den Transport von warmem Wasser konvektiv nachgeführt wird.

Regeneration in klüftigem System[Bearbeiten]

Wärmetransport durch Konvektion ist immer effektiver, da das Problem der Begrenzung des Wärmetransports durch den Widerstand des Gebirgskörpers gegen die Wärmeleitung umgangen wird. Deswegen sollte ein Investor für Geothermieprojekte nach Möglichkeit geologische Regionen suchen, in denen durch Klüfte warmes oder heißes Tiefenwasser nachströmt (offene Kluftsysteme):

  • Karstgebiete (z. B. bayerisches Molassebecken) oder
  • Zonen mit offenen Kluftsystemen (z. B. der Oberrheingraben)

sind daher für Geothermieprojekte bevorzugte Regionen in Deutschland.

In einer Modellrechnung über den Wärmetransport wurde in diesem Zusammenhang exemplarisch für einen Standort im bayerischen Molassebecken das Folgende festgestellt: Für ein hydrothermales System im Malmkarst mit 50 l/s Reinjektionsrate und 55 °C Reinjektionstemperatur wurde die folgende Zeitdauer für die vollständige Wärmeregeneration unmittelbar um die Injektionsbohrung nach Abschluss des Dublettenbetriebs bei rein konduktivem Wärmetransport berechnet: Nach 2.000 Jahren wird eine Temperatur von 97 °C und etwa 8.000 Jahre nach Betriebsende die Ausgangstemperatur von 99,3 °C wieder erreicht: „Die Modellierung der Wärmeregeneration nach Abschluss eines 50 Jahre währenden Betriebszeitraumes unter den gegebenen Randbedingungen verdeutlicht, dass frühestens nach 2000 Jahren mit einer weitgehenden thermischen Regeneration des Reservoirs im Malm zu rechnen ist“. Die Modellrechnung verdeutlicht aber auch das hohe Potenzial des Reservoirs: „Im vorliegenden Szenario kann zusammengefasst gesagt werden, dass im Betriebszeitraum von 50 Jahren erwartungsgemäß nur von einer geringen thermischen Beeinflussung des Nutzhorizontes auszugehen ist, da die erschlossene Malm-Mächtigkeit mehrere 100 Meter beträgt und somit ein ausreichend großes Wärmereservoir zur Wiedererwärmung des injizierten Wassers zur Verfügung steht. Exemplarisch zeigt … die radiale Kaltwasserausbreitung im Injektionshorizont zu diesem Zeitpunkt mit einem Radius von ca. 800 m.“[50]

Wärmetransport in dichtem Gestein[Bearbeiten]

In dichtem Gestein kann die nachhaltige Entnahme ausschließlich aus dem Wärmestrom abgedeckt werden, der durch die Wärmeleitung geliefert wird. Der Wärmestrom hängt dann vom Wärmeleitkoeffizienten ab. Die Entnahme ist dann so zu gestalten, dass während der geplanten Betriebsdauer die Rücklauftemperatur nicht unter den Mindestwert absinkt, der durch das Nutzungskonzept bestimmt wird.

Risiken[Bearbeiten]

Risiken für die Sicherheit eines Geothermieprojekts[Bearbeiten]

Die oberflächennahe Geothermie kann bei der Einhaltung des Standes der Technik und einer ausreichend intensiven Überwachung und Wartung so errichtet und betrieben werden, dass in der Regel keine erheblichen Risiken von solchen Anlagen ausgehen. Durch die stark angestiegene Verbreitung dieser Nutzungsform, steigt jedoch auch entsprechend das Risiko von technischem Versagen wegen Übernutzung der Potenziale (im Anstrom steht eine nicht bekannte Anlage oder wird eine Anlage errichtet, die den Grundwasserstrom vorkühlt) oder von Fehlplanungen.

Die tiefe Geothermie muss sehr sorgfältig geplant und durchgeführt werden, um die damit verbundenen Risiken im für eine Genehmigung zulässigen Bereich zu halten. Die Tiefbohrtätigkeiten werden daher von zahlreichen Behörden intensiv überwacht und setzen ein umfangreiches Genehmigungsverfahren voraus. So wird das gegebene Risiko als planbar herstellbar bezeichnet, wenn z. B. folgende Aspekte beachtet werden:

Risiken seismischer Ereignisse[Bearbeiten]

Kleinere, kaum spürbare Erderschütterungen (Induzierte Seismizität) sind bei Projekten der tiefen Geothermie in der Stimulationsphase (Hochdruckstimulation) möglich. Im späteren Verlauf, soweit nur der Dampf entzogen wird und nicht reinjiziert wird, ist es durch Kontraktion des Speichergesteins zu Landabsenkungen gekommen (z. B. in Neuseeland, Island, Italien). Diese Probleme führten bereits zur Einstellung von Geothermieprojekten (z. B. Geysers-HDR-Project der AltaRock Energy Inc.[51] Kalifornien 2009[52] und Kleinhüningen bei Basel 2009).

Die Gesteine des Cooperbeckens in Australien gelten für wirtschaftliche Bohrtiefen und unabhängig von vulkanischer Aktivität als vergleichsweise heiß.[53] Als das Reservoir angebohrt wurde, kam es zu einem kleinen Erdbeben mit einer Magnitude auf der Richterskala von 3,7.[54]

Die Wahrscheinlichkeit für das Auftreten seismischer Ereignisse und deren Intensität richtet sich stark nach den geologischen Gegebenheiten (z. B. wie permeabel die wasserführende Gesteinsschicht ist) sowie nach der Art des Nutzungsverfahrens (z. B. mit welchem Druck das Wasser in das Gestein injiziert wird oder mit welchem Druck stimuliert wird).

Generell ist eine verlässliche Bewertung der Risiken durch tiefe Geothermie in Deutschland nur begrenzt möglich, da hierzulande bislang nur wenige langfristige Erfahrungswerte vorliegen.

Ob stärkere Schadensbeben durch Geothermie ausgelöst werden können, ist derzeit umstritten, war aber die Grundlage für die Einstellung des Vorhabens in Basel. Es ist jedoch festzuhalten, dass bisher weltweit, auch nach jahrzehntelanger Geothermienutzung noch nirgendwo Beben aufgetreten sind, die zu strukturellen Schäden geführt hätten.

Die Seismizitäten von Basel und Landau verdeutlichen, dass eine sorgfältige Planung und Ausführung für die Aufrechterhaltung der Sicherheit in einem Geothermieprojekt wichtig ist:

Kleinhüningen bei Basel/Schweiz (2006)[Bearbeiten]

Bei dem Geothermieprojekt Deep Heat Mining Basel in Kleinhüningen im Großraum Basel/Schweiz gab es seit dem 8. Dezember 2006 im Abstand von mehreren Wochen bis zu einem Monat fünf leichte Erschütterungen mit abnehmender Magnitude (von 3,4 bis 2,9).[55][56][57] Dadurch soll ein Schaden zwischen 3 und 5 Mio. Schweizer Franken (ca. 1,8 bis 3,1 Mio. Euro) entstanden sein,[58] verletzt wurde niemand.

Die Staatsanwaltschaft in Basel hat gegen den Geschäftsführer der Firma Geothermal Explorers Ltd. wegen

  • Sachbeschädigung mit großem Schaden[59] sowie
  • der Verursachung eines Einsturzes[60]

Anklage erhoben.[61] Das Gericht hat den Geologen jedoch freigesprochen, das strafrechtliche Verfahren ist damit beendet.[62][63]

Inzwischen wurde entschieden, das Vorhaben nicht fortzusetzen, da gemäß einer am 10. Dezember 2009 vorgestellten Risikoanalyse allein während des Anlagenbaus mit weiteren schweren Erdbeben und mit Schäden von rund 40 Millionen Franken gerechnet wird. Während des Betriebs sind zusätzlich Schäden von rund sechs Millionen Schweizer Franken pro Jahr zu erwarten.[46]

Die Erde beruhigt sich nach derartigen Vorfällen meist nur langsam und es kommt oft zu einer ganzen Serie kleinerer Erdstöße.

Landau in der Pfalz (2009)[Bearbeiten]

In Landau in der Pfalz hat es am 15. August und 14. September 2009 leichte Erderschütterungen gegeben, die von dem Geothermiekraftwerk Landau verursacht wurden.[64] Die Erdstöße hatten eine Stärke von ca. 2,5 auf der Richterskala und sind als leicht einzustufen. Infolge dieser Ereignisse wird das Geothermiekraftwerk Landau seismologisch überwacht. Es wurde gemäß der Richtlinie GTV 1101[65] sowohl ein Emissionsmessnetz als auch ein Immissionsmessnetz zur Beurteilung der Erschütterungen nach DIN 4150 eingerichtet. Ein Reaktionsschema, das eines der Ergebnisse der Diskussion in einem Mediationsverfahren ist, ermöglicht zusammen mit der Überwachung einen kontrollierten Betrieb der Anlage. Dazu gehört auch die zeitnahe Veröffentlichung aller Ereignisse im Internet und die Einschaltung eines Ombudsmannes bei der Beurteilung eventueller Schäden. Zur Sicherstellung der Wirksamkeit der getroffenen Maßnahmen hat das Land einen Geothermie-Beauftragten benannt. Landau ist seit 2010 eine zentraler Forschungsort des BMU-Projektes MAGS zur Erforschung induzierter Seismiziät. Im Rahmen dieses Projektes wurden weitere Messstationen mit vorwiegend Forschungsaufgaben eingerichtet, die auch im Folgeprojekt MAGS2 betrieben werden. Seit der Umsetzung dieser Maßnahmen ist die Ereignishäufigkeit und mittlere Ereignisstärke in Landau zurückgegangen. Es gab nur ganz vereinzelt verspürte Ereignisse und keine Überschreitungen der Anhaltwerte der DIN 4150. Seit Inbetriebnahme des Geothermiekraftwerkes Insheim (2012) werden diese beiden Kraftwerke gemeinsam überwacht.

Potzham/Unterhaching bei München (2009)[Bearbeiten]

Am 2. Februar 2009 wurden bei Potzham nahe München zwei Erdstöße der Stärke 1,7 und 2,2 auf der Richterskala gemessen. Potzham liegt in unmittelbarer Nähe des 2008 fertig gestellten Geothermiekraftwerks Unterhaching. Die gemessenen Erdstöße ereigneten sich ca. ein Jahr nach Inbetriebnahme dieses Kraftwerks.[66] Aufgrund der großen Herdtiefe ist ein unmittelbarer Zusammenhang zum Geothermieprojekt Unterhaching jedoch fraglich. Weitere Mikro-Beben wurden gem. Geophysikalischem Observatorium der Uni München in Fürstenfeldbruck dort nach der Installation weiterer Seismometer zwar beobachtet, sie lagen jedoch alle unter der Fühlbarkeitsgrenze. Auch die größten Ereignisse in Potzham lagen unterhalb der Fühlbarkeitsgrenze gemäß der Einteilung der Richterskala. Auch sie wurden daher mit hoher Wahrscheinlichkeit nicht verspürt, sondern nur von Geräten aufgezeichnet.

Sittertobel bei St. Gallen (2013)[Bearbeiten]

Am 20. Juli 2013 wurden in der Umgebung von St. Gallen mehrere Erdstöße in 4km Tiefe bis zu einer Magnitude von 3,6 registriert.[67] Es wurden 120 Sachschäden gemeldet, bei denen in der nächsten Zeit überprüft wird, ob sie mit dem Ereignis zusammenhängen.[68] Mikrobeben sind in diesem Raum seit dem 14. Juli 2013 registriert worden, die im Lauf des 20. Juli 2013 allmählich abgeklungen sind. Nach Angaben des Schweizerischen Erdbebendienst stehen diese leichten Erdbeben vermutlich in Zusammenhang mit Test und Stimulationsmaßnahmen am Fußpunkt der Geothermiebohrung Sankt Gallen GT-1. Die Bohrung Gallen GT-1 hat das Ziel, das heiße Wasser aus den oberjurassischen Malm-Kalksteinen geothermisch zu nutzen.[69] Bei der planmäßigen Reinigung der Bohrlochsohle in einer Tiefe von 4450m mit verdünnter Salzsäure wurde plötzlich Gas freigesetzt. Der zur Verfügung stehende Blowout-Preventer musste nicht eingesetzt werden.[70] Um das Bohrloch zu stabilisieren wurde eine Schwerspülung eingeleitet, die wahrscheinlich für das Auslösen der Beben verantwortlich gemacht werden kann. Am 20. Juli 2013 wurde die Bohrung temporär eingestellt, um das Bohrloch zu stabilisieren und um Möglichkeiten zur Fortsetzung des Geothermieprojektes zu prüfen.[71][72] In der Nacht zum 21. Juli wurde begonnen, das sich im Bohrloch angesammelte Gas kontrolliert abzufackeln und das Bohrloch technisch zu stabilisieren, was in den folgenden Tagen gelang.[73][74] Der St. Galler Stadtrat entschied am 27. August 2013, die laufende Bohrphase wieder aufzunehmen und abzuschliessen.[75]

Schäden an Gebäuden und Infrastruktur[Bearbeiten]

Dabei treten indirekt verursachte Schäden durch Verformungen der Tagesoberfläche (Hebungen/Senkungen) oder direkte durch Bohrungen auf. Im Jahr 2012 existierten in Deutschland nahezu 300.000 Installationen oberflächennaher Nutzung von Geothermie. Jährlich kommen etwa 40.000 neue dazu. In einigen Fällen sind Probleme aufgetreten, die jedoch vor Allem einen Bedarf an verbesserter Qualitätskontrolle und Qualitätssicherung aufgezeigt haben.

Als herausragend ist in diesem Zusammenhang der massive Schadensfall von Staufen zu nennen. Dieser und weitere Problemfälle sind nachfolgend aufgeführt; die Stadt Freiburg hat in der Folge ihre Auflagen zur Nutzung oberflächennaher Geothermie verschärft, sie sind jetzt genehmigungspflichtig. Im Jahr 2008 hatte es dort in zwei Fällen Probleme mit Geothermiebohrungen gegeben: In einem Fall war ein Abwasserkanal beschädigt worden, in einem anderen Fall sprudelte aus einer versiegten Quelle dreckiges Wasser heraus.[76][77]

Böblingen[Bearbeiten]

In Böblingen zeigen sich seit 2009 in nun 80 Häusern immer größer werdende Risse. Ein Zusammenhang mit der Nutzung geothermischer Energie ist noch nicht nachgewiesen, jedoch liegt ein Verdacht gegen älteren Geothermiebohrungen durch Anhydrit-Quellen im Gipskeuper vor.[78][79]

Kamen-Wasserkurl[Bearbeiten]

In Kamen haben sich nach Erdwärmebohrungen zur Erschließung oberflächennaher Geothermie im Juli 2009 mehrere Tage lang die Häuser gesetzt. „Die Ursache, warum in Kamen-Wasserkurl 48 Kubikmeter Boden plötzlich in einem Loch verschwanden, ist geklärt: Erdwärmebohrungen vergrößerten bereits vorhandene Risse im Felsgestein. Die Schuldfrage kann indes nur in einem langwierigen Rechtsverfahren geklärt werden.“[80]

Leonberg-Eltingen[Bearbeiten]

Im Jahr 2011 führten Probebohrungen in 80 Metern Tiefe im Leonberger Stadtteil Eltingen zu Rissen an ungefähr 25 Häusern. Auch hier hatte abfließendes Grundwasser zu Senkungen geführt. Im Jahr 2012 wurden die Bohrungen mit Zement abgedichtet.[81]

Rottenburg-Wurmlingen[Bearbeiten]

Im Jahr 2002 waren im Kapellenweg in Rottenburger Stadtteil Wurmlingen Bohrungen durchgeführt worden.[82] 2011 musste der Weg für den Durchgangsverkehr gesperrt werden, da sich darin große Löcher befanden. Zudem wurden mehrere Gebäude beschädigt. Die Ursache liegt auch hier in der Gipskeuperschicht begründet, die durch Grund- oder Regenwasser langsam ausgewaschen wird und damit ein Absenken des Bodens bewirkt.[83]

Rudersberg-Zumhof[Bearbeiten]

In Zumhof, einem Dorf der Gemeinde Rudersberg im Rems-Murr-Kreis, wurden in den Jahren 2007 und 2009 Bohrungen für 20 Erdwärmesonden niedergebracht. Bei einer zusätzlichen Bohrung, die nicht mit Zement abgedichtet war, brach das Bohrgestänge ab. Im Oktober 2012 betrug die Hebungsgeschwindigkeit infolge des Gipskeuperquellens dort 7 Millimeter pro Monat.[84] Die schadhaften Bohrungen werden seit März 2013[85] zur Sanierung überbohrt und sollen anschließend mit Ton verschlossen werden, nachdem man das Bohrgestänge geborgen hat. Zudem soll Grundwasser abgepumpt werden.[86] Das Bohrunternehmen schloss einen Vertrag mit dem zuständigen Landratsamt, damit dessen Versicherung die Reparatur bezahlen kann. Die Geschädigten müssen indes direkt gegen das Unternehmen klagen.[85]

Schorndorf[Bearbeiten]

In Schorndorf im Rems-Murr-Kreis sank nach Geothermiebohrungen in 115 Metern Tiefe im Jahr 2008 der Grundwasserspiegel ab, da die Bohrungen ein Abfließen in tiefere Gesteinsschichten bewirkt haben. Das dadurch fehlende Volumen führte zu einer Senkung der Erdoberfläche, die die Keplerschule sowie ein knappes Dutzend Privathäuser beschädigte.[87]

Staufen im Breisgau[Bearbeiten]

In Staufen traten im Jahr 2008 nach dem Abteufen mehrerer Erdwärmesonden (mit je ca. 140 m Tiefe), zur Beheizung unter anderem des Rathauses, erhebliche kleinräumige Hebungen von bis zu 20 cm im bebauten Stadtgebiet auf, die zu großen Zerrungen und Stauchungen bzw. Schiefstellungen an Gebäuden führten. Über 200 Häuser wurden dabei erheblich beschädigt. Die Ursache ist eine Reaktion von Wasser mit Anhydrit (wasserfreier, dehydrierter Gips).[88] Durch die Umwandlung von Anhydrit zu Gips nimmt das Gestein Kristallwasser auf, wodurch es an Volumen zunimmt. Geschieht dies großflächig, so wird die Ausdehnung ggf. zur Tagesoberfläche übertragen und führt dort zu punktuellen Hebungen, wodurch die Tagesoberfläche deformiert wird. Dadurch entstehen Risse an den betroffenen Häusern. Das Problem des Aufquellens von Anhydrit bei der Umwandlung zu Gips ist aus dem Tunnelbau und dem Tiefbau bekannt und hängt von den regionalen geologischen Bedingungen ab (z. B. im sog. Gipskeuper Südwestdeutschlands).

Schadensursache sind auch ungenügende geologische Recherchen (Kosteneinsparung) und zu große Bohrneigung durch "preiswerte Bohrungen" (Kosteneinsparungen). Hier wurde an falscher Stelle gespart.

Die Umwandlung von Anhydrit zu Gips ist auch ein natürlicher Prozess, immer wenn ein Anhydrit-haltiges Gestein innerhalb der Verwitterungszone mit Oberflächenwasser, Niederschlagswasser bzw. Grundwasser in Kontakt kommt (Hydratationsverwitterung). Ab einer bestimmten Tiefe in der Erdkruste sind die Druck- und Temperaturverhältnisse so hoch, dass eine Kristallumwandlung trotz Wasserkontakt nicht mehr eintritt.

Mitte 2013 wurde das erste Haus abgerissen. 270 Häuser wurden beschädigt. Der Schaden wird mit 50 Mio. € bewertet. Bis Mitte 2013 wurden 7,5 Mio. € für den Schadensausgeleich verwendet, an dem sich auch das Land Baden-Württemberg und der kommunale Finanzausgleich beteiligt haben.[89]

Allgemeine Risiken[Bearbeiten]

Bei der Förderung von Thermalfluiden (Wasser/Gas) stellen ggf. die Inhaltsstoffe des geförderten Lagerstättenwassers eine Umweltgefahr dar, falls das Fluid nicht reinjiziert wird. Die Reinjektion der Thermalfluide erfolgt in Deutschland jedoch bei allen Geothermieanlage, so dass dies nur ein theoretisches Risiko ist.

Im Bereich der oberflächennahen Geothermie besteht das Risiko, bei Nutzung eines tieferen Grundwasserleiters den trennenden Grundwassernichtleiter derart zu durchstoßen, dass ein die Grundwasserstockwerke verbindendes Fenster entsteht, mit der möglichen Folge nichterwünschter Druckausgleiche und Mischungen. Bei einer ordnungsgemäßen Ausführung der Erdwärmesonde wird dies allerdings zuverlässig verhindert. Es wurden nach entsprechenden Schadensfällen ausführliche Richtlinien zur Qualitätssicherung eingerichtet, um diesem Risiko zu begegnen.

Ein weiteres potenzielles Risiko bei einer Geothermiebohrung ist das Anbohren von Artesern. Bei unsachgemäßer Bohrausführung kann es zum spontanen Austritt von Grundwasser am Bohransatzpunkt und zu kleinräumigen Überschwemmung kommen.[90]

Auch gespannte (unter Überdruck stehende) Gase können unvermutet von einer Tiefbohrung angetroffen werden und in die Bohrspühlung eintreten. Denkbar sind Erdgas, Kohlendioxid oder auch Stickstoff. Solche Gaseintritte sind meistens nicht wirtschaftlich verwertbar. Gaseintritten ist bohrtechnisch durch entsprechende Maßnahmen zu begegnen wie sie für Tiefbohrungen vorgeschrieben sind. Der Fall St. Gallen hat die Wirksamkeit dieser Maßnahmen bestätigt.

Regeln der Technik zur Minimierung der Risiken[Bearbeiten]

Zur Beherrschung des Problems Induzierte Seismizität hat der GtV-Bundesverband Geothermie mit Hilfe einer internationalen Forschergruppe ein Positionspapier erarbeitet, das als Hauptteil umfangreiche Handlungsanweisungen zur Beherrschung der Seismizität bei Geothermieprojekten vorschlägt.[91]

Im Zusammenhang mit Gebäudeschäden in der Stadt Staufen ist eine Diskussion um Risiken der oberflächennahen Geothermie entbrannt. Untersuchungen dazu, ob das Aufquellen von Anhydrit die Ursache sein könnte, wurden inzwischen beauftragt. Das Landesamt für Geologie, Rohstoffe und Bergbau in Freiburg hat als Konsequenz empfohlen, bei Gips- oder Anhydritvorkommen im Untergrund auf Erdwärmebohrungen zu verzichten.[92] Da ganz geringe Mengen an Gips/Anhydrit bei etwa zwei Drittel der Fläche des Landes vorkommen können, deren genaue Verbreitung aber weitgehend unbekannt ist, wurde diese Vorgehensweise von der Geothermie-Industrie als überzogen kritisiert.[93]

Hinweise, wie eine sichere Geothermiebohrung hergestellt werden kann, findet man im Leitfaden zur Nutzung von Erdwärme mit Erdwärmesonden des Umweltministeriums Baden-Württemberg.[94]

Risiken für die Wirtschaftlichkeit eines Geothermieprojekts[Bearbeiten]

Wirtschaftlichkeitrisiken eines oberflächennahen Projekts[Bearbeiten]

Bei der oberflächennahen Geothermie besteht das größte Risiko in einer Übernutzung der Geothermiepotentiale. Wenn benachbarte Geothermieanlagen sich gegenseitig beeinflussen, kann die Vorlauftemperatur der im Abstrom des Grundwassers gelegene Anlage so weit abgesenkt werden, dass die Wärmepumpe nur noch mit einer sehr ungünstigen Leistungszahl betrieben werden kann. Dann heizt der Nutzer im Grunde genommen mit Strom und nicht mit Erdwärme. Das tückische daran ist, dass die Fläche im Anstrom des Grundwassers, in der eine Errichtung einer weiteren Anlage zu einer zusätzlichen erheblichen Absenkung der Temperatur des Grundwassers für die betroffene Anlage führt, sehr groß sein kann und es für den Betreiber schwierig ist, die Ursache hierfür zu erkennen. Er wird das wahrscheinlich nur merken, wenn er den außentemperaturbereinigten Stromverbrauch ins Verhältnis zur genutzten Wärmemenge setzt, um so die Leistungszahl beobachten zu können. Das erfordert aber die Kenntnis der mittleren wirksamen Außentemperatur und der im Haus abgegebenen Wärmemenge und bedarf eines großen Messaufwandes.

Wirtschaftlichkeitsrisiken eines tiefen Projekts[Bearbeiten]

Bei der tiefen Geothermie ist vor allem das Fündigkeitsrisiko und das Umsetzungsrisiko zu beachten.

Die Risiken können beim Eintreten des Schadensfalls zu einer Unwirtschaftlichkeit des Vorhabens führen. Um das Scheitern von Geothermieprojekten zu verhindern, bietet die öffentliche Hand für Kommunen Bürgschaften an (z.B. durch die KfW), die wirksam werden, wenn zum Beispiel in einer Bohrung einer bestimmten kalkulierten Tiefe kein heißes Tiefenwasser nach einer Tiefenwasser-Schüttung in ausreichender Menge gefördert werden kann. Auch einige große Versicherungen bieten solche Versicherungsprodukte an.

Fündigkeitsrisiko[Bearbeiten]

Das Fündigkeitsrisiko ist das Risiko bei der Erschließung eines geothermischen Reservoirs Thermalwassers nicht in ausreichender Quantität oder Qualität fördern zu können, aufgrund fehlkalkulierter Prognosen über die benötigte Tiefe der Bohrung.

Ab einer gewissen Tiefe wird das geothermische Potenzial immer erschlossen, jedoch steigen mit zunehmender Tiefe die Bohrkosten überproportional und es wird mehr und spezielleres Know-how nötig. Sind die verfügbaren Mittel und damit die Bohrtiefe (etwa auf wenige Kilometer) eng begrenzt, muss unter Umständen das ganze Bohrprojekt wenige hundert Meter vor einem nutzbaren Wärme-Reservoir für eine Tiefenwasser-Schüttung abgebrochen werden.

Die Quantität definiert sich dabei aus Temperatur und Förderrate. Die Qualität beschreibt die Zusammensetzung des Wassers, die sich beispielsweise durch Salinität oder Gasanteile ungünstig auf die Wirtschaftlichkeit auswirken kann, jedoch weitgehend betriebstechnisch beherrschbar ist.[95] Um das Fündigkeitsrisiko für den Investor abzufedern, werden mittlerweile Fündigkeitsversicherungen auf dem Versicherungsmarkt angeboten.

Umsetzungsrisiko[Bearbeiten]
Betriebsrisiko[Bearbeiten]

Während des Betriebes können Prozesse zu Einwirkungen auf das Projekt führen, die den Wärmeertrag so mindern, dass unplanmäßige Wartungsarbeiten erforderlich werden (z. B. Auflösungen von Kristallbildungen durch Säuerung). Da dann meistens teure Bohrausrüstungen angemietet und Fachleute bezahlt werden müssen, kann das zur Unwirtschaftlichkeit des Gesamtvorhabens führen.

Konkurrierende Nutzung[Bearbeiten]

Konkurrierende Nutzung zur Tiefengeothermie können Projekte der Kohlenwasserstoffförderung oder- speicherung darstellen. Vor allem der starke Ausbau von Untertage-Gasspeichern steht in einigen Regionen Deutschlands (Molasse, Norddeutsche Ebene, Rheintalgraben) in direkter Konkurrenz zu tiefengeothermischen Projekten. Aktuell in der Diskussion ist auch die Nutzungkonkurrenz durch die Absicht großer Kohlekraftwerksbetreiber und der Industrie, verflüssigtes CO2 in den Untergrund zu Verpressen (CCS-Technologie). Die RWE Dea AG hat dazu bereits die Hälfte des Landes Schleswig-Holstein bergrechtlich reserviert. Sollte es zu einer Untersuchungsgenehmigung kommen, so wäre dieser Bereich für die Aufsuchung und Nutzung von Erdwärme ausgeschlossen.[97]

Siehe auch[Bearbeiten]

Literatur[Bearbeiten]

Statistikquellen

  • R. Bertini: World geothermal generation 2001–2005. World Geothermal Congress, Antalya 2005 (pdf, online).
  • Imagekampagne: Unendlich viel Energie.
  • J. Lund u. a.: World wide direct use of geothermal energy 2005. World Geothermal Congress, Antalya 2005 (pdf, online).
  • R. Schellschmidt u. a.: Geothermal energy use in Germany. World Geothermal Congress, Antalya 2005 (pdf, online).
  • V. Steffansson: World geothermal assessment. World Geothermal Congress, Antalya 2005 (pdf, online).
  • J. Lund: Ground Heat – worldwide utilization of geothermal energy. Renewable Energy World, 2005.

Allgemeines

  • C. Clauser: Geothermal Energy. In: K. Heinloth (Hrsg.): Landolt-Börnstein, Physikalischchemische Tabellen. Group VIII: Advanced Materials and Technologies. Bd 3. Energy Technologies, Subvol. C. Renewable Energies. Springer, Heidelberg/Berlin 2006, 480-595, ISBN 3-540-42962-X.
  • Burkhard Sanner: Erdwärme zum Heizen und Kühlen. Potentiale, Möglichkeiten und Techniken der Oberflächennahe Geothermie. Kleines Handbuch der Geothermie. Bd 1. Red. B. Sanner, W., Bußmann. Geothermische Vereinigung, Geeste 2001 (3. überarb. Aufl.), ISBN 3-932570-21-9.
  • W.J. Eugster, L. Laloui (Hrsg.): Geothermische Response Tests. Verlag der Geothermischen Vereinigung, Geeste 2002, ISBN 3-932570-43-X.
  • Geothermische Vereinigung, GeoForschungsZentrum Potsdam (Hrsg.): Start in eine neue Energiezukunft. Tagungsband 1. Fachkongress Geothermischer Strom Neustadt-Glewe 12.–13. November 2003. Geothermische Vereinigung, Geeste 2003, ISBN 3-932570-49-9.
  • Ernst Huenges: Energie aus der Tiefe: Geothermische Stromerzeugung. in: Physik in unserer Zeit. Wiley-VCH, Weinheim 35.2004,6, S. 282–286, ISSN 0031-9252.
  • F. Rummel, O. Kappelmeyer (Hrsg.): Erdwärme, Energieträger der Zukunft? Fakten – Forschung – Zukunft/Geothermal Energy, Future Energy Source? Facts-Research-Futur. Unter Mitarbeit von J. Jesse, R. Jung, Fl. Rummel & R. Schulz. C. F. Müller, Karlsruhe 1993, ISBN 3-7880-7493-0.
  • Stober, Ingrid; Bucher, Kurt: Geothermie. Springer-Verlag, Berlin Heidelberg, 2012, ISBN 978-3-642-24330-1
  • Michael Tholen, Simone Walker-Hertkorn: Arbeitshilfen Geothermie Grundlagen für oberflächennahe Erdwärmesondenbohrungen, Wirtschafts- und Verlagsgesellschaft Gas und Wasser mbH, Bonn 2007, ISBN 978-3-89554-167-4.
  • Zeitschrift Geowissenschaften, Hefte 7+8 (1997, Sonderhefte mit dem Thema Geothermie).
  • Zeitschrift Sonderheft bbr Oberflächennahe Geothermie, Wirtschafts- und Verlagsgesellschaft Gas und Wasser mbH, Bonn Dezember 2008.
  • M. Augustin, W. Freeden et al.: "Mathematische Methoden in der Geothermie", Mathematische Semesterberichte 59/1, S. 1–28, Springer Verlag 2012.
  • Hausmann/Pohl: CleanTech Studienreihe | Band 6 Geothermie, Bonn 2012, ISBN 978-3-942292-16-0.
  • Bußmann, W.: Geothermie – Energie aus dem Innern der Erde. Fraunhofer IRB Verlag, Stuttgart 2012, ISBN 978-3-8167-8321-3.

Weblinks[Bearbeiten]

 Commons: Geothermie – Sammlung von Bildern, Videos und Audiodateien
 Wiktionary: Geothermie – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Einzelnachweise[Bearbeiten]

  1. a b The KamLAND Collaboration: Partial radiogenic heat model for Earth revealed by geoneutrino measurements. Nature Geoscience 4, 2011, S. 647–651, doi:10.1038/ngeo1205.
  2. Büro für Technikfolgenabschätzung beim Deutschen Bundestag: Möglichkeiten geothermischer Stromerzeugung in Deutschland. (PDF) Seite 18.
  3. V. Steffansson: World geothermal assessment (PDF)
  4. Tiefen-Geothermie in Down Under. Australien sieht sich als Labor für die umstrittene «hot rock»-Technologie.
  5. Super C: Tiefenwärme nicht wirtschaftlich (Aachener Zeitung, 18. Juli 2011)
  6. info-geothermie.ch.
  7. Tiefen-EWS Oftringen (706 m) (PDF; 3,8 MB) Direktheizen mit einer 40-mm-2-Kreis PE-Tiefen-Erdwärmesonde.
  8. patent-de.com.
  9. NZZ-online: Stör als Frutigtaler Qualitätsprodukt, 16. September 2006.
  10. jenbach.at: Geothermisches Tunnelkraftwerk Jenbach (PDF; 521 kB).
  11. Overview minewater projects in REMINING-lowex
  12. Archivierte Seite von gmk.info im Webarchiv, archiviert 6. Mai 2014
  13. Geothermie gerät unter Druck. In: taz.
  14. R. Schellschmidt u. a.: Geothermal energy use in Germany. World Geothermal Congress, Antalya 2005 (PDF).
  15. energyprofi.com, abgerufen am 20.Oktober 2011
  16. Masdar Starts Geothermal Drilling (in Englisch) Artikel auf RenewableEnergyWorld.com vom 24. März 2010.
  17. J. Bertani: Geothermal Power Generation in the world - 2005–2010 Update Report. Proceedings of the World Geothermal Congress 2010.
  18. J. Lund: Ground Heat - worldwide utilization of geothermal energy. Renewable Energy World, 2005.
  19. J. Bertani: Geothermal Power Generation in the world – 2005–2010 Update Report. Proceedings of the World Geothermal Congress 2010.
  20. geothermie-nachrichten.de, 2008, Burkhard Sanner: Erdgekoppelte Wärmepumpen in Deutschland und Europa: ein Wachstumsmarkt – Rechtliche Situation der Geothermie in europäischen Ländern; Deutschland(3. Oktober 2010).
  21. Beate Beule: Restrisiko - Freiburg verschärft Auflagen für Geothermie-Projekte badische-zeitung.de, Lokales, Freiburg, 16. März 2010 (17. Oktober 2010).
  22. Wulf Rüskamp: Neue Grenzen für Erdwärme-Bohrungen. In: Badische Zeitung, 19. August 2011
  23. bkz-online.de bkz-online.de, 8. September 2011: Neue Grenze bei Erdwärmebohrung (10. September 2011).
  24. Deutsches GeoForschungsZentrum: Intelligent die Wärme der Erde nutzen, 26. Februar 2009.
  25. gebo-nds.de
  26. Geothermisches Informationssystem für Deutschland: Verzeichnis Geothermischer Standorte.
  27. Pressemitteilung des Branchenverbandes.
  28. Entwicklung der Neuanlagen.
  29. Bayerisches Staatsministeriums für Umwelt, Gesundheit und Verbraucherschutz: Oberflächennahe Geothermie – Übersichtskarte Bayern 1:200.000 (PDF 9,6 MB), siehe Umgebung von Ansbach.
  30. Bundesverband Geothermie. e. V.: Politischer Einsatz für Bad Urach.
  31. Martin Kruska, EUtech Energie Management GmbH; Jonas Mey, Greenpeace Deutschland e. V.: Studie 2000 Megawatt – sauber! (PDF; 2,7 MB) September 2005.
  32. pfalzwerke.de.
  33. Projekt Brühl Zielsetzung. GeoEnergy GmbH, abgerufen am 21. September 2014.
  34. http://www.morgenweb.de/region/schwetzinger-zeitung-hockenheimer-tageszeitung/bruhl/richter-weisen-die-klage-ab-1.1143526.
  35. Projekt Schaidt. GeoEnergy GmbH. Abgerufen am 9. Mai 2014.
  36. firstgeotherm.de: Daten zum Projekt Speyer von der Firma FirstGeoTherm
  37. speyer-aktuell.de: Stadtwerke Speyer verpachten ehemaliges Geothermie-Gelände, 20. September 2006.
  38. erdwerk.com (PDF).
  39. Stimulation in Mauerstetten genehmigt. ITG Informationsportal Tiefe Geothermie, 2014, abgerufen am 21. September 2014.
  40. [1]
  41. Geothermie in Gelting - Warten was das rauskommt. Süddeutsche Zeitung. 20. August 2013. Abgerufen am 18. Oktober 2013.
  42. a b Süddeutsche Zeitung: Bernried Geothermieprojekt gestoppt, 20. September 2013.
  43. Projekte von Daldrup im Zeitplan. ITG Informationsportal Tiefe Geothermie. 2. Dezember 2012. Abgerufen am 5. Oktober 2013.
  44. [2] , abgerufen am 13. Dezember 2012.
  45. geothermie-soultz.fr: GEIE - Le programme Géothermie Soultz, abgerufen am 25. Juni 2008 (französisch).
  46. a b Definitives Aus für Basler Geothermieprojekt. In: Neue Zürcher Zeitung, 10. Dezember 2009. Abgerufen am 11. Dezember 2009.
  47. Geothermie-Projekt der Stadt St. Gallen. In: Geothermie-Projekt.
  48. Forschungsstelle für Energiewirtschaft e. V.: Niedertemperatur-Netz mit dezentraler Wärmeerzeugung.
  49. Büro für Technikfolgenabschätzung beim Deutschen Bundestag: Möglichkeiten geothermischer Stromerzeugung in Deutschland (PDF) Arbeitsbericht Nr. 84, Februar 2003 (PDF).
  50. F. Wenroth, T. Fitzer, M. Gropius, B. Huber, A. Schubert: Numerische 3D-Modellierung eines geohydrothermalen Dublettenbetriebs im Malmkarst. (PDF; 1,6 MB) In: Geothermische Energie 48/2005, August 2005. Seite 16–21.
  51. AltaRock Energy #Status in der englischsprachigen Wikipedia
  52. Geothermie unter Druck: HDR Projekt innerhalb am Standort The Geysers in den USA wird eingestellt. heise-online, 15. Dezember 2009.
  53. Economics of Geothermal Energy geodynamics.com.au (25. Oktober 2007).
  54. C. J. Bromley: Geothermal Energy from Fractured Reservoirs – Dealing with Induced Seismicity (PDF; 278 kB) iea.org, IEA Open Journal 48, S. 5, Heft 7/2007.
  55. Basler Zeitung: Erneut Erdbeben in Basel wegen Geothermieprojekt (nicht mehr aufrufbar)
  56. Erneut Erdbeben am Bohrloch von Basel. In: Spiegel Online, 16. Januar 2007.
  57. news.ch: Erneuter Geothermie-Erdstoss in der Region Basel, 21. März 2007.
  58. Basler Zeitung: Geothermie-Erdstösse: 3 bis 5 Millionen Franken Schaden
  59. Die Bundesbehörden der Schweizerischen Eidgenossenschaft: Art. 144 Sachbeschädigung im 2. Buch des Strafgesetzbuches der Schweiz
  60. Die Bundesbehörden der Schweizerischen Eidgenossenschaft: Art. 227 Verursachen … eines Einsturzes im 2. Buch des Strafgesetzbuches der Schweiz.
  61. NZZ-online: Anklage wegen Verursachung von Erdbeben, 5. März 2008.
  62. Freispruch für den leitenden Geologen. In: Spiegel-online, 22. Dezember 2009. Abgerufen am 22. Dezember 2009.
  63. Freispruch für Erdbebenmacher - Geologe hat nicht vorsätzlich gehandelt. In: NZZ Online, 21. Dezember 2009 (22. Dezember 2009).
  64.  Das Beben von Landau. In: Der Spiegel. Nr. 39, 2009 (online).
  65. http://www.geothermie.de/fileadmin/useruploads/Service/Publikationen/GTV_Richtlinie_2011-1.pdf.
  66. Erdbebendienst Bayern: Erdbeben in Bayern seit dem Jahr 1390.
  67. Schweizerischer Erdbebendienst, Aktuelle Meldung am 20. Juli 2013.
  68. News.ch: Lage in St. Gallen stabil, abgerufen am 26. Juli 2013.
  69. Neue Zürcher Zeitung: Unbekannte Baustellen im Untergrund, abgerufen am 20. Juli 2013.
  70. Geothermieprojekt St. Gallen: Meldungen über den Bohrablauf, abgerufen am 21. Juli 2013.
  71. Neue Zürcher Zeitung: Geothermiebohrung vorübergehend gestoppt, abgerufen am 20. Juli 2013
  72. Neue Zürcher Zeitung am Sonntag: Der Geothermie droht das aus, abgerufen am 21. Juli 2013.
  73. Geothermieprojekt St. Gallen: Medienmitteilung vom 21. Juli 2013 (PDF; 45 kB), abgerufen am 21. Juli 2013.
  74. News.ch: Lage in St. Gallen stabil, abgerufen am 26. Juli 2013.
  75. St. Gallen führt Projekt weiter. Eine zweite Chance für die Geothermie.
  76. Beate Beule: Restrisiko – Freiburg verschärft Auflagen für Geothermie-Projekte. In: Badische Zeitung, Lokales, Freiburg, 16. März 2010 (17. Oktober 2010)
  77. badische-zeitung.de, Nachrichten, Südwest, 26. Februar 2010, Bastian Henning: Ein Traum ist geplatzt – Basel, Staufen und Schorndorf in Schwaben haben das Vertrauen in die Geothermie erschüttert (17. Oktober 2010).
  78. Badische Zeitung, 25. Oktober 2013, Wenke Böhm/dpa: badische-zeitung.de: Nach Erdwärmebohrung: In Böblingen hebt sich die Erde (25. Oktober 2013).
  79. Informationsseite rund um das Thema "die ERDE HEBT SICH in Böblingen": erde-hebt-sich.de (25. Oktober 2013).
  80. derwesten.de.
  81. Marius Venturini: Leonberg: Landratsamt gibt grünes Licht für Geschädigte, stuttgarter-zeitung.de, 21. September 2012, abgerufen am 1. April 2013.
  82. In Wurmlingen bricht der Boden weg, tuebinger-wochenblatt.de, 30. August 2012, abgerufen am 1. April 2013.
  83. Gutachten: Erdwärmebohrungen lösten Erdsenkungen nicht aus, tagblatt.de, 16. August 2012, abgerufen am 1. April 2013.
  84. Landratsamt Rems-Murr-Kreis: Geländehebungen in Rudersberg setzen sich noch fort, Pressemeldung, 26. Oktober 2012, abgerufen am 1. April 2013.
  85. a b Oliver Hillinger: Rudersberg: Präzise Reparaturen im Gips, stuttgarter-zeitung.de, 12. März 2013, abgerufen am 1. April 2013.
  86. Landratsamt Rems-Murr-Kreis: Problemlösung für Geländehebungen in Zumhof jetzt in greifbarer Nähe, Pressemeldung, 19. Februar 2013, abgerufen am 1. April 2013. (Seite nicht mehr abrufbar)Vorlage:Toter Link/!...nourl
  87. Armin Kübler: Geothermie birgt noch immer Risiken, schwaebische.de, 10. Februar 2011, abgerufen am 1. April 2013.
  88. Nach Erdwärme-Bohrung: Eine Stadt zerreißt''. In: Spiegel Online, 15. November 2008.
  89. Staufener Geothermie bringt erstes Haus zu Fall; Schwäbische Zeitung Online, Gesellschaft für Multimedia mbH & Co. KG; abgerufen am 5. August 2013.
  90. (Zum Beispiel jüngst Arteser am hessischen Finanzministerium Wiesbaden, der nach einiger Zeit mit Zement ausreichender Dichte geschlossen wurde).
  91. Positionspapier Seismizität (PDF; 100 kB)
  92. Staatsanzeiger Nr  6 vom 20. Februar 2009, S. 13.
  93. Modernisierungsmagazin 1–2, 2009, S. 9.
  94. Leitfaden zur Nutzung von Erdwärme mit Erdwärmesonden des Umweltministeriums Baden-Württemberg (PDF; 4,8 MB).
  95. Bundesverband Geothermie: Wissenswelt – Lexikon der Geothermie Fündigkeitsrisiko.
  96. [3] Deutschlandfunk 20. Dezember 2011: Das verstopfte Bohrloch.
  97. Verbändeanhörung im BMWi am 27. August 2010 zeigt erhebliche Widerstände gegen neuen Anlauf für CCS-Gesetz..
Dies ist ein als exzellent ausgezeichneter Artikel.
Dieser Artikel wurde am 23. September 2005 in dieser Version in die Liste der exzellenten Artikel aufgenommen.