Gnomon

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Dieser Artikel befasst sich mit dem Schattenzeiger; zu der Zeitschrift siehe Gnomon (Zeitschrift)
[1] moderne horizontale Groß-Sonnenuhr mit Obelisk als Gnomon
[2] vertikale Sonnenuhr mit Gnomon für Italienische Stunden

Der Gnomon (von griechisch γνώμων Gnomon Schattenzeiger) ist ein bereits vor der Antike bekanntes astronomisches Instrument in der Form eines senkrecht in den Boden gesteckten hölzernen Stabes. Er diente vor allem als Schattenstab für Sonnenuhren.[1] Von da aus ging die Entwicklung bis zur gelegentlichen Verwendung eines Obelisken als Schattenwerfer. Der Sonnenschatten seiner Spitze wird beobachtet, um astronomische Größen zu bestimmen.

Die Beschreibung der Projektion der Sonne mittels Nodus (schattenwerfender Punkt oder Lochblende) ist eine Aufgabe der Gnomonik, der Lehre von der Sonnenuhr.

Anwendung des Gnomons[Bearbeiten]

In der Antike wurde der Gnomon zur Bestimmung der geografischen Breite eines Ortes, der Nordrichtung, der Tagundnachtgleichen (Äquinoktien), der Sonnenwenden (Solstitien) und der Ekliptik verwendet. Dazu wurde der Gnomon in der Regel als einfacher Stab (meistens aus Holz), selten als Obelisk oder als besonderes Bauwerk ausgeführt. Allen Gnomonen gemeinsam ist die besondere Ausführung der Spitze: Damit deren Schatten scharf abgebildet wird und damit präzise ablesbar ist, ist sie spitz geformt oder mit einer kleinen Kugel (Nodus) versehen. Eine Variante mit durchlochter Scheibe an der Spitze zum Erzeugen eines Lichtflecks ist bereits aus dem Alten China bekannt.[2]

Nach dem Gnomon ist eine Zentralprojektion der Himmelskugel auf eine Ebene benannt, die gnomonische Projektion. Mit ihr kann der Schattenpunkt des Nodus für jeden Standort und Sonnenstand berechnet und auf dem Zifferblatt ein zweidimensionales Kurvennetz konstruiert werden. Auf den Linien, die alle Kegelschnitte sind, lässt sich sowohl die Tages- als auch die Jahreszeit ablesen.

Geschichte des Gnomons[Bearbeiten]

Am Anfang wurde vermutlich vom Gnomon, der der Mensch selbst sein konnte, nur die Schattenlänge abgelesen und interpretiert. Ein astronomisches Instrument mit Gnomon könnte ein Mittagsweiser gewesen sein. Damit wurde mit Hilfe einer auf dem Boden in Meridian-Richtung angebrachten Skala die Mittags-Schattenlänge gemessen.

Über diesen sehr frühen Schritt in verschiedenen Kulturen (einschließlich Altes China) ist nur wenig bekannt. Auf einer babylonischen Tontafel aus der Zeit um 2300 v. Chr. sind die Schattenlängen eines Gnomons zu verschiedenen Zeiten angegeben.

Bei den Chinesen soll der Gnomon seit frühesten Zeiten ein wichtiges astronomisches Instrument gewesen sein. In einem der ältesten Mathematikbücher, dem Zhoubi suanjing, stellt der im elften Jahrhundert v. Chr lebende Herzog von Zhou, Zhou Gong Dan, seinem Hofbeamten Shang Gao mathematische Aufgaben, darunter auch die Umrechnung der Schattenlänge des Gnomons in den Sonnenstand. Chinesische Astronomen haben den Gnomon mindestens bis zur frühen Yuan-Dynastie verwandt und weiterentwickelt (siehe Gaocheng-Observatorium). Laut Herodot (ca. 485–425 v. Chr.) haben die Griechen das Prinzip des Gnomons von den Babyloniern übernommen.

Durch Ausrüstung eines Mittagsweisers mit einer Stunden-Skala wurde daraus schließlich eine vollwertige Sonnenuhr. Texte zu und Funde von Sonnenuhren gibt es aus dem Alten Ägypten. Die altägyptische Schattenuhr und eine gleichzeitig verwendete Wandsonnenuhr waren aber nicht geeignet, die Tagesstunden in jeder Jahreszeit richtig anzuzeigen. Beide Uhren verwendeten einen horizontalen Schattenwerfer, eine Kante die eine, einen Stab die andere. Dieser Sonnenuhrentyp wurde im Mittelalter erneut benutzt (siehe kanoniale Sonnenuhr). Von Sonnenuhren ab dem vierten Jahrhundert v. Chr. in Griechenland berichtet Vitruv (siehe Hauptartikel Sonnenuhr).

Eratosthenes von Kyrene stellte 225 v. Chr. Messungen mit Gnomonen an, aus denen er den Erdumfang zu etwa 252.000 Stadien berechnete. Er stellte fest, dass sich die Mittagshöhe der Sonne in Alexandria von der in Syene (Assuan) etwa um 7,2° unterscheidet. Mit diesem Winkel und der bekannten Distanz von etwa 5.000 Stadien zwischen beiden ziemlich auf gleichem Längengrad liegenden Städten erhielt er ein Ergebnis, das dem tatsächlichen Wert von 40.024 Kilometern (etwa 240.000 Stadien) sehr nahekommt.

Mathematische Grundlagen zur Nutzung des Gnomons[Bearbeiten]

Projektion der Sonne auf ein Zifferblatt

[3] Gnomonische Projektion

Die Abbildung der Sonne durch einen Punkt ist eine Zentralprojektion. Sie wird wegen ihrer Entwicklung im Zusammenhang mit der Gnomonik auch Gnomonische Projektion genannt. Das Projektionszentrum liegt im Zentrum des Himmels (gleich Zentrum der Erde). Die Vereinfachung, das Projektionszentrum auf die Erdoberfläche in die Spitze eines Gnomons zu verlegen, ist für die Aufgabenstellung zulässig, da die Sonne soweit entfernt ist, dass die Parallaxe aufgrund des Erdradius vernachlässigbar ist. Die Abbildung [4] zeigt eine Gnomonische Projektion mit lotrechtem Gnomon und horizontaler Projektionsfläche, die zum Beispiel die Fläche des Zifferblattes einer Sonnenuhr ist (horizontale Sonnenuhr). Alle Großkreise wie der Himmels-Äquator und der durch den Standort verlaufende Meridian werden bei der Gnomonischen Projektion als Geraden abgebildet. Da die Stundenkreise der Sonne ebenfalls Großkreise sind, werden sie auf dem Zifferblatt als ein Geradenbüschel (Stundengeraden) abgebildet, das im Durchstoßpunkt der Polachse auf der Projektionsfläche konvergiert. Die Wendekreise – werden als Hyperbeln abgebildet. Damit ist ersichtlich, dass der Schatten der Gnomonspitze zur Tagundnachtgleiche (Äquinoktium) von Sonnenaufgang bis –untergang auf einer Geraden verläuft und dabei die Stundengeraden schneidet. Zur Sonnenwende bewegt er sich auf einer Hyperbel und schneidet dabei über den Tagesverlauf ebenfalls die Stundenlinien.

Abbildung [3] zeigt, dass der Schatten des lotrechten Gnomonstabes die Stundengeraden schneidet. Würde der Stab im Durchstoßpunkt der Polachse auf die Projektionsfläche gestellt und in Richtung Himmels-Pol zeigen, so würde sein Schatten ebenso wie die Stundengeraden vom Durchstoßpunkt aus radial nach außen verlaufen. Somit würde jeder Punkt des Schattens die Zeit richtig zeigen. Ein solcher Stab heißt Polstab. Er bildet die Sonne eindimensional ab.

Antike Messungen mit dem Gnomon[Bearbeiten]

Dieser Artikel oder Abschnitt bedarf einer Überarbeitung. Näheres ist auf der Diskussionsseite angegeben. Hilf mit, ihn zu verbessern, und entferne anschließend diese Markierung.
Dieser Artikel oder nachfolgende Abschnitt ist nicht hinreichend mit Belegen (beispielsweise Einzelnachweisen) ausgestattet. Die fraglichen Angaben werden daher möglicherweise demnächst entfernt. Bitte hilf der Wikipedia, indem du die Angaben recherchierst und gute Belege einfügst. Näheres ist eventuell auf der Diskussionsseite oder in der Versionsgeschichte angegeben. Bitte entferne zuletzt diese Warnmarkierung.
[4] Nordrichtung finden mit dem Gnomon

Für die geografische Ortsbestimmung müssen Länge und Breite eines Ortes festgelegt werden. Bezugspunkt für die Breite ist dabei der Äquator. Für die Länge muss ein Bezugspunkt vereinbart werden: Heute ist das der Meridian durch die Sternwarte von Greenwich. Im Altertum hat man eine bekannte Stadt zum Beispiel Alexandria als Bezugspunkt gewählt. Von dieser aus konnte dann durch Bestimmung der Richtung und Entfernung zum nächsten Ort dessen Länge festgelegt werden. Diese Messung musste in der Praxis durch Zerlegung der Strecke in einzelne nach Richtung und Länge bestimmte Abschnitte (Polygonierung) erfolgen.

Bestimmung der Nordrichtung und der geografischen Breite

Zur Bestimmung der Nordrichtung werden um den Gnomon mehrere Kreise gezogen (siehe Abb. [4]). Die Sonne schneidet jeden Kreis einmal am Vormittag (V) und einmal am Nachmittag (N). Die Nordrichtung - bzw. die Mittagslinie - ist die Winkelhalbierende der jeweiligen Schenkelpaare zu V und N. Das Verfahren kann zur Genauigkeitssteigerung an verschiedenen Tagen oder wie in Abb. [4] dargestellt mit verschiedenen Kreisen wiederholt werden. Dieselbe Vorgangsweise, nur näher am Meridian, ist in der Astrometrie als Zirkummeridian-Methode bekannt.

Zur Tagundnachtgleiche steht die Sonne in der Äquatorebene. Dann entspricht das zu Mittag (Höchststand der Sonne) gemessene Verhältnis Schattenlänge : Stablänge dem Tangens der geografischen Breite. In der Literatur der Antike wurde die Breite dementsprechend auch als das äquinoktiale Schattenverhältnis angegeben. Die Literatur berichtet für

[5] Skiotherikós Gnomon
  • Alexandria 3 zu 5 (Strabon II, 5, 38)
  • Massila (Marseille) (Pytheas) und Byzantion (Hipparchos) 120 zu 41,8
  • Rom 8 zu 9 (Vitruv)
  • Rhodos 5 zu 7 (Vitruv)
  • Tarent 9 zu 11 (Vitruv)
  • Athen 3 zu 4 (Vitruv)

Die Äquinoktialschatten sind allerdings nur schwer zu ermitteln. Die entsprechende Schattenline liegt aber auf der Winkelhalbierenden der beiden Solstitienschatten. Diese sind sehr wohl beobachtbar. Somit kann die geografische Breite aus den beiden Beobachtungen zur Winter- und zur Sommersonnenwende gemittelt werden.

Da die Sonne eine relative große Ausdehnung als Lichtquelle hat (½ Grad), wirft sie keinen scharf abgegrenzten Schatten, was die genaue Ablesung erschwert. Daher wurde eine Scheibe mit Lochblende oder eine Kugel zur Verbesserung der Ablesegenauigkeit an der Gnomonspitze befestigt. Die Kugel finden wir heute noch auf unseren Kirchtürmen - doch ist dieser Turmknauf mit Kreuz vorwiegend ein Symbol für Weltkugel und Erlösung, das oft auch als Dokumentenkapsel dient.

Aktuelle Forschungen zu antiken astro-geodätischen Messinstrumenten rechtfertigen die Annahme, dass bereits bei den Griechen für diese Vermessungen speziell gefertigte komplexe Messinstrumente auf der Basis eines derart verbesserten Gnomons verwendet wurden, welche in ihrer funktionalen Ausprägung ähnlich der Abb. [5] konstruiert waren.

Begriffsverwendung in der Geometrie[Bearbeiten]

In der Mathematik, speziell in der planaren Geometrie, bezeichnet der Begriff Gnomon die Restfläche zwischen zwei ähnlichen Figuren. Diese Konstruktion war schon in der griechisch-hellenistischen Mathematik bekannt und bezeichnete eine geometrische Figur, die entsteht, wenn man aus einem Parallelogramm ein ihm ähnliches und ähnlich gelegenes so ausschneidet, dass es eine Ecke mit dem ursprünglichen Parallelogramm gemeinsam hat.

Gnomon-Metapher in der Literatur zur Bibelexegese[Bearbeiten]

In theologischer Fachliteratur fand der Begriff Gnomon in einem berühmten Werk der Bibelexegese eine Verwendung in übertragenem Sinn als Metapher.

Im Jahr 1742 veröffentlichte der pietistische Theologe Johann Albrecht Bengel (1687–1752) den lateinischen Gnomon Novi Testamenti, einen um Genauigkeit bemühten Kommentar zum Neuen Testament, der den wahren Sinn des Textes aufschließen, aufzeigen sollte. Mit dieser emblematisch (sinnbildlich)[3] ausgerichteten Wahl des Begriffs "Zeiger" weist Bengel auf sein Interesse an der seiner Ansicht nach chronologisch fassbaren, berechenbaren Heilsgeschichte hin, die, entsprechend den seiner Ansicht nach durch ihn entschlüsselten Aussagen der Johannes-Apokalypse wie ein Uhrwerk ablaufen sollte. Bengels Schwiegersohn Philipp David Burk verwandte den Begriff ebenfalls in seiner Exegese der Psalmen.

Siehe auch[Bearbeiten]

Im Boden von Innenräumen eingelassene Sonnenuhren finden sich in:

Literatur[Bearbeiten]

  • Oskar Becker: Das mathematische Denken der Antike. 2. Auflage. Mit einem Nachtrag von Günther Patzig. Vandenhoeck & Ruprecht, Göttingen 1966, ISBN 3-525-25304-4 (Studienhefte zur Altertumswissenschaft 3).
  • François Dom Bedos di Celles: La Gnomonique pratique, ou l'art de tracer les cadrans solaires. Avec des observations sur la maniere de regler les Hozloges. Chez Briasson, Despilly, Hardy, Paris 1760. Faksimile-Ausgabe: Laget, Librairie Paris 1978, ISBN 2-85204-076-X.
  • Dieter Lelgemann, Eberhard Knobloch, Andreas Fuls, Andreas Kleineberg: Zum antiken astro-geodätischen Messinstrument Skiotherikós Gnomon. In: ZfV. Zeitschrift für Geodäsie, Geoinformation und Landmanagement. 130, Heft 4, 2005, ISSN 1618-8950, S. 238–247.
  • Helmut Minow: Schattenmessung mit dem Gnomon. In: ZfV. Zeitschrift für Geodäsie, Geoinformation und Landmanagement. 130, Heft 4, 2005, S. 248–252.
  • René R. J. Rohr: Die Sonnenuhr. Geschichte, Theorie, Funktion. Callwey, München 1982, ISBN 3-7667-0610-1.
  • Karlheinz Schaldach, Römische Sonnenuhren. Eine Einführung in die antike Gnomonik. 3. Auflage. Deutsch, Frankfurt am Main 2001, ISBN 3-8171-1649-7.
  • Karl Schoy: Über den Gnomonschatten und die Schattentafeln der arabischen Astronomie. Ein Beitrag zur arabischen Trigonometrie nach unedierten arabischen Handschriften. Lafaire, Hannover 1923.
  • Vitruvius: Vitruvii De architectura libri decem. = Zehn Bücher über die Architektur. Übersetzt und mit Anmerkungen versehen von Curt Fensterbusch. Lizenzausgabe. 5. Auflage. Primus, Darmstadt 1996, ISBN 3-89678-005-0.

Einzelnachweise[Bearbeiten]

  1. Renè R. J. Rohr: Die Sonnenuhr. Geschichte, Theorie, Funktion. Callwey, München 1982, ISBN 3-7667-0610-1, S. 10
  2. Renè R. J. Rohr: Die Sonnenuhr. Geschichte, Theorie, Funktion. Callwey, München 1982, ISBN 3-7667-0610-1, S. 13
  3. Vgl. Reinhard Breymayer: "Gnomon typusque vitae Christianae". Zum emblematischen Hintergrund des "Gnomon"-Begriffs bei Heinrich Oraeus (1584–1646) und bei Johann Albrecht Bengel (1687–1752)". In: Blätter für württembergische Kirchengeschichte, Jg. 88 (1988). Festschrift für Gerhard Schäfer. Hrsg. von Martin Brecht. Stuttgart [1989], S. 289–323.