Gyrator

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Dieser Artikel behandelt die elektronische Schaltung. Zum psychiatrischen Therapiegerät siehe Cox' Schaukel.
Prinzipschaltung eines Gyrators, der eine Induktivität simuliert.

Als Gyrator (auch Dualinverter) bezeichnet man in der Elektronik ein Zweitor, das beliebige Impedanzen in ihre dualen Impedanzen transformieren kann. Das heißt, ein Gyrator zeigt bei kapazitiver Ausgangsbelastung ein induktives Eingangsverhalten. Faktisch kann man damit eine Kapazität in eine Induktivität umwandeln und umgekehrt.

Allgemeines[Bearbeiten]

Gyratoren werden als aktive elektronische Schaltungen realisiert, die Grundschaltung kann dabei der negative Impedanzkonverter sein. Aber auch andere elektronische Schaltungen können gyratorisches Verhalten zeigen, wie beispielsweise gegengekoppelte Emitterstufen von Bipolartransistoren in bestimmten Arbeitspunktbereichen. Allerdings sind diese Gyratoren aus Stabilitätsgründen nur bedingt brauchbar, da sich gerade in dieser Schaltung die Temperaturdrift (Temperaturabhängigkeit der Transistoreigenschaften) negativ bemerkbar macht bzw. Einschränkungen im Arbeitsbereich bestehen. Prinzipiell können Gyratorschaltungen Kondensatoren und Spulen mit festen oder variablen und meist ungewöhnlich hohen Kapazitäts- oder Induktivitätswerten hoher Güte nachbilden, was sonst nicht so einfach mit den entsprechenden normalen Bauelementen machbar wäre. Die nachgebildeten Kapazitäten oder Induktivitäten können je nach Gyratorschaltung nach Masse oder auch schwebend in der den Gyrator umgebenden Anwendungsschaltung wirksam sein. Nachteilig ist jedoch, dass ein bestimmter Arbeitsbereich (Spannung, Strom) sowie ein nach oben eingeschränkter Arbeitsfrequenzbereich für diese nachgebildeten Kondensatoren oder Spulen beachtet werden muss, der durch die genutzten aktiven Gyrator-Bauelemente (Transistoren, Operationsverstärker) durch deren Grenzfrequenzen, Phasenverläufe, Betriebsspannungen, Ausgangsstromergiebigkeiten und Gleichtaktarbeitsbereiche vorgegeben ist. Gyratoren sind daher auch meist nur im Kleinsignalbereich einsetzbar. Nachteilig kann sich das Eigenrauschen der verwendeten aktiven Bauelemente auswirken. Gyratoren können aber gut gemeinsam mit ihrer umgebenden Anwendungsschaltung in elektronischen Schaltkreisen integriert werden.

Stabile Gyratoren werden in Form von zwei spannungsgesteuerten Stromquellen realisiert, die aus zwei Operationsverstärkern mit Stromausgang (Transkonduktanzverstärker) bestehen.

In der Systemtheorie wird ein Übertragungssystem als Gyrator bezeichnet, wenn die Flussgröße am Ausgang proportional zur Potentialgröße am Eingang ist und umgekehrt.

Komplexer Gyrator[Bearbeiten]

Ein Komplexer Gyrator findet bei der Systemanalyse von Übertragungssystemen Anwendung[1]. Der Zusatz "Komplex" bezieht sich hier auf die Besonderheit, dass die Flussgröße am Ausgang zwar proportional zur Potentialgröße am Eingang ist, jedoch eine zusätzliche Phasenverschiebung vorliegt. Gleiches gilt analog zum Allgemeinen Gyrator auch in umgekehrter Richtung. Flussgrößen und Potentialgrößen sind im komplexen Fall stets Wechselgrößen.

Ein Komplexer Gyrator ist durch zum Beispiel zwei gekoppelte Induktivitäten realisierbar, welche jeweils mit einem Serienresonanzkondensator beschaltet und mit gemeinsamer Resonanzfrequenz angeregt werden.

Literatur[Bearbeiten]

  •  Ulrich Tietze, Christoph Schenk: Halbleiter-Schaltungstechnik. 12. Auflage. Springer, 2002, ISBN 3-540-42849-6.

Weblinks[Bearbeiten]

 Commons: Gyrators – Sammlung von Bildern, Videos und Audiodateien
 Wiktionary: Gyrator – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Einzelnachweise[Bearbeiten]

  1. Dominik Huwig: "Energieübertragung durch Nahfeldkopplung. etatronix.de, abgerufen am 15. März 2015. S. 47.