D’Hondt-Verfahren

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von Höchstzahlverfahren nach d'Hondt)
Wechseln zu: Navigation, Suche

Das D’Hondt-Verfahren (nach dem belgischen Juristen Victor D’Hondt; auch Divisorverfahren mit Abrundung, im angelsächsischen Raum: Jefferson-Verfahren, in der Schweiz: Hagenbach-Bischoff-Verfahren) ist eine Methode der proportionalen Repräsentation (Sitzzuteilungsverfahren), wie sie z. B. bei Wahlen mit dem Verteilungsprinzip Proporz (siehe Verhältniswahl) benötigt wird, um Wählerstimmen in Abgeordnetenmandate umzurechnen.

Das Verfahren kann in Form fünf mathematisch äquivalenter Algorithmen bzw. Varianten verwendet werden, die stets dasselbe Sitzzuteilungsergebnis generieren:

  • als Zweischrittverfahren,
  • als Höchstzahlverfahren,
  • als Rangmaßzahlverfahren,
  • als Paarweiser-Vergleich-Verfahren oder
  • als Quasi-Quotenverfahren wie vom Schweizer Physiker Eduard Hagenbach-Bischoff beschrieben.

Geschichte[Bearbeiten]

In den USA machte der spätere Präsident Thomas Jefferson auf Basis des nach ihm benannten Divisorverfahrens mit Abrundung im Jahre 1792 einen Vorschlag für die bevölkerungsproportionale Verteilung der Sitze im US-Repräsentantenhaus auf die Bundesstaaten. Das Verfahren wurde bis 1840 verwendet, als es vom Hamilton-Verfahren abgelöst wurde (Bezeichnung im angelsächsischen Sprachraum für das Hare-Niemeyer-Verfahren), das kleinere Parteien weniger benachteiligt.

In Deutschland wurde das D’Hondt-Verfahren bis einschließlich 1983 zur Berechnung der Sitzverteilung bei Wahlen zum Deutschen Bundestag verwendet, bei der Wahl 1987 jedoch durch das Hare-Niemeyer-Verfahren ersetzt (vgl. oben die Entwicklung in den USA 147 Jahre vorher). Aus dem gleichen Grund und durch das gleiche Verfahren war das D’Hondt-Verfahren bereits im Jahre 1970 bei der Berechnung der Ausschussbesetzung abgelöst worden.

Bei Wahlen zu einigen Landesparlamenten, Gemeindevertretungen, Richterwahlausschüssen oder Betriebsräten wird das D’Hondt-Verfahren auch heute noch angewandt, allerdings – wegen seiner proporzverzerrenden Wirkung (systematische Benachteiligung kleiner Parteien, s.u.) – ebenfalls immer seltener.

In Österreich wird das D’Hondt-Verfahren im dritten Ermittlungsverfahren bei Wahlen zum Nationalrat (siehe NRWO) und bei Hochschülerschaftswahlen angewandt.

Berechnungsbeispiel[Bearbeiten]

Partei Zahl der
Stimmen
Prozentanteil
der Stimmen
Sitze pro-
portional
Sitze nach
d’Hondt
Partei A 416 41,6 % 4,16 4
Partei B 338 33,8 % 3,38 4
Partei C 246 24,6 % 2,46 2
1000 100,00 % 10 10
Stimmenverteilung
bei der Wahl eines 10-köpfigen Gremiums
Divisor Partei A Partei B Partei C
1 416 (1) 338 (2) 246 (3)
2 208 (4) 169 (5) 123 (7)
3 138,7 (6) 112,7 (8) 82
4 104 (9) 84,5 (10) 61,5
5 83,2 67,6 49,2
6 69,3 56,3 41
Ermittlung der Höchstzahlen (die Werte
in Klammern entsprechen der Vergabereihenfolge)

Treten zur Wahl eines Gremiums mehrere Parteien an, ist der proportionale Sitzanteil auf Basis des Stimmenanteils (Idealanspruch) nur in seltenen Fällen ganzzahlig. Daher ist ein Verfahren zur Berechnung einer ganzzahligen Sitzzahl notwendig, die jede Partei in dem Gremium erhält.

Bei Verwendung des d’hondtschen Höchstzahlverfahrens teilt man die Zahl der erhaltenen Stimmen einer Partei nacheinander durch eine aufsteigende Folge natürlicher Zahlen (1, 2, 3, 4, 5, …, n). Die dabei erhaltenen Bruchzahlen werden als Höchstzahlen bezeichnet. Als Basis dieser Division (Dividend) wird dabei immer die Ausgangszahl – hier also die ursprüngliche „Zahl der Stimmen“ – herangezogen. Der Dividend bleibt in jeder Spalte stets gleich und wird durch den sich verändernden Divisor (hier: 1, 2, 3, …) geteilt.

Die Höchstzahlen werden danach absteigend nach ihrer Größe geordnet. Die so ermittelte Reihenfolge gibt die Vergabereihenfolge der Sitze an. Es finden so viele Höchstzahlen Berücksichtigung, wie Sitze im Gremium zu vergeben sind. Im vorliegenden Beispiel werden 10 Sitze vergeben. Die 10 größten Höchstzahlen (dunkler unterlegt) werden absteigend nach ihrer Größe an die ihnen zugeordneten Parteien verteilt. Die letzte bzw. kleinste Höchstzahl, für die eine Partei noch einen Sitz erhält, gibt den Vertretungswert (auch Vertretungsgewicht) ihrer Sitze an. Der Vertretungswert ist das Verhältnis aus Stimmen- und Sitzanzahl einer Partei. Partei A repräsentiert mit jedem Sitz 104, Partei B 84,5 und Partei C 123 Wähler. Nicht nur absolut, sondern auch im Verhältnis zu ihrem Stimmenanteil ist Partei B im Gremium deutlich stärker vertreten als Partei C.

Bei Verwendung des Zweistufenverfahrens werden die Stimmenzahlen aller Parteien durch eine geeignete (nicht notwendig ganze) Zahl (Divisor) geteilt und die Ergebnisse abgerundet. Die Zahl lässt sich durch Probieren ermitteln. Sie ist höchstens gleich jener Höchstzahl, die als letzte zu einem Mandat führt. Diese Höchstzahl ist immer geeignet. Jede Zahl, die zur richtigen Gesamtzahl von Sitzen führt, ist geeignet. Im Beispiel ergibt sich die Sitzzuteilung auch mittels Division durch 84, das heißt für je volle 84 Stimmen erhält jede Partei einen Sitz.

Eigenschaften[Bearbeiten]

Fehlerminimierung (Minimax-Kriterium)[Bearbeiten]

D’Hondt maximiert den minimalen (niedrigsten) Vertretungswert (Stimmen pro Sitz). D. h. bei gegebenem Wahlergebnis gibt es kein anderes Sitzzuteilungsverfahren, bei dem das Stimmen-Sitz-Verhältnis der Partei mit dem niedrigsten Stimmen-Sitz-Verhältnis höher ist als das Stimmen-Sitz-Verhältnis der Partei mit dem niedrigsten Stimmen-Sitz-Verhältnis nach D’Hondt.

Umgekehrt zum Vertretungswert bestimmt man den Erfolgswert als das Verhältnis von Sitzen pro Stimme für eine Partei (Kehrwert des Vertretungswerts). Folglich minimiert D’Hondt den maximalen (höchsten) Erfolgswert (Sitze pro Stimme).

Mehrheitsbedingung[Bearbeiten]

D’Hondt erfüllt die Mehrheitsbedingung, nicht aber die Minderheitsbedingung. D. h. eine Partei, die mindestens 50 % der Stimmen auf sich vereinigt, erhält auch mindestens 50 % der Sitze. Umgekehrt kann aber eine Partei, die nicht mindestens 50 % der Stimmen auf sich vereinigt, trotzdem 50 % der Sitze erhalten, wenn alle anderen Parteien ein schlechteres Stimmenergebnis haben.

Die Erfüllung der Mehrheitsbedingung wird durch die systematische Bevorzugung größerer Parteien „erkauft“. Soll hingegen sichergestellt werden, dass eine Partei mit absoluter Stimmenmehrheit, also mindestens einer Stimme mehr als die Hälfte der Stimmen, auch die absolute Mehrheit der Sitze erhält, muss die Gesamtsitzzahl ungerade sein.

Dass D’Hondt bei gerader Gesamtsitzzahl die absolute Mehrheitsbedingung nicht grundsätzlich erfüllt, zeigt folgendes Beispiel: Anzahl zu vergebender Sitze: 10, Anzahl abgegebener gültiger Stimmen: 1000. Partei A: 505 Stimmen, Partei B 495 Stimmen. Im Ergebnis erhalten beide Parteien 5 Sitze und Partei A damit nicht die absolute Mehrheit von (mindestens) 6 Sitzen.

Das Problem ließe sich beseitigen, indem der Partei mit absoluter Stimmenmehrheit, wenn sie nicht die absolute Mehrheit der Sitze erhalten hat, ein zusätzlicher Sitz zugeteilt und die Gesamtsitzzahl damit ungerade gemacht wird. Soll die Gesamtsitzzahl des Gremiums jedoch unter allen Umständen geradzahlig sein, müsste eine Regelung getroffen werden, nach der die größte Partei einen Grundsitz erhält und nur die restlichen Sitze nach D’Hondt verteilt werden, was eine zusätzliche Proporzverzerrung schaffen würde.

Quotenbedingung[Bearbeiten]

Wie bei allen anderen Divisorverfahren kann die Quotenbedingung verletzt werden (siehe Extrembeispiel im nächsten Abschnitt), nach der die Sitzzahl einer Partei nur um weniger als 1 von ihrem Idealanspruch bzw. ihrer Quote (Stimmenzahl mal Mandatszahl geteilt durch Gesamtstimmenzahl) abweichen soll:

  • nach dem D’Hondt-Verfahren kann eine (große) Partei nicht nur den auf die nächste ganze Zahl nach oben gerundeten Sitzanspruch erhalten, sondern sogar einen oder mehrere Sitze darüber hinaus;
  • der umgekehrte Fall ist jedoch nicht möglich, da das Verfahren die Quotenbedingung zwar nicht nach oben, wohl aber nach unten erfüllt; d. h. keine (kleine) Partei kann weniger Sitze erhalten, als es ihrer abgerundeten Quote entspricht.

Benachteiligung kleinerer Parteien[Bearbeiten]

Die Sitzzuteilung kann stark von der Proportionalität abweichen (proporzverzerrende Wirkung in Form systematischer Benachteiligung kleinerer Parteien). Dieser Effekt wird gefördert durch große Unterschiede in den Parteistärken, eine hohe Anzahl antretender Parteien und eine niedrige Anzahl zu vergebender Sitze.

Extremes Beispiel: Anzahl zu vergebender Sitze: 10, Anzahl abgegebener gültiger Stimmen: 1000. Partei A erringt 600 Stimmen, 7 weitere Parteien erringen zusammen 400 Stimmen (darunter keine mehr als 59). Im Ergebnis erhält Partei A mit einem Stimmenanteil von 60 % alle 10 Sitze.

Allgemein gilt: Bei n zu vergebenden Sitzen erhält die stärkste Partei alle n Sitze, wenn ihr Stimmenanteil mehr als n-mal größer ist als der der zweitstärksten Partei. Somit kann die stärkste Partei bei beliebig kleinem Stimmenanteil alle Sitze erhalten, wenn die Parteienanzahl entsprechend groß ist. Ist der Stimmenanteil der stärksten Partei genau n-mal so groß wie der der zweitstärksten, haben beide Parteien den gleichen Anspruch auf den n-ten Sitz, der folglich verlost werden muss.

Vergleich mit dem Hare-Niemeyer-Verfahren und dem Sainte-Laguë-Verfahren[Bearbeiten]

Am Beispiel der Landtagswahl Schleswig-Holstein 2005 kann illustriert werden, dass das D’Hondt-Verfahren kleinere Parteien gegenüber größeren benachteiligt, das Hare-Niemeyer-Verfahren und das Sainte-Laguë-Verfahren jedoch nicht. In Schleswig-Holstein wurde bis zum Jahr 2009 bei Landtagswahlen das D’Hondt-Verfahren angewandt; ab 2012 gilt das Sainte-Laguë-Verfahren.

Nach dem vorläufigen amtlichen Ergebnis ergab sich die Sitzverteilung nach den beiden Verfahren wie folgt:

Partei Stimmanzahl Sitzverteilung Relative Abweichung vom Idealanspruch
Idealanspruch D’Hondt Hare-Niemeyer Sainte-Laguë D’Hondt Hare-Niemeyer Sainte-Laguë
CDU 576.100 29,077 30 29 29 +3,175 % -0,265 % -0,265 %
SPD 554.844 28,004 29 28 28 +3,556 % -0,015 % -0,015 %
FDP 94.920 4,791 4 5 5 -16,507 % +4,367 % +4,367 %
Grüne 89.330 4,509 4 4 4 -11,282 % -11,282 % -11,282 %
SSW 51.901 2,620 2 3 3 -23,651 % +14,524 % +14,524 %
Summe 1.367.095 69 69 69 69

Die relative Abweichung vom Idealanspruch gibt an, um welchen Prozentsatz die Vertretung einer Partei mit Abgeordneten im Parlament von ihrem bei der Wahl errungenen Stimmenanteil abweicht:

  • ist die relative Abweichung vom Idealanspruch positiv, erlangt die Partei durch das Sitzzuteilungsverfahren einen Vorteil, da sie im Parlament stärker vertreten ist, als es ihrem Stimmenanteil entspricht;
  • ist die relative Abweichung vom Idealanspruch negativ, erlangt die Partei durch das Sitzzuteilungsverfahren einen Nachteil, da sie im Parlament schwächer vertreten ist, als es ihrem Stimmenanteil entspricht.

Mehrfache Anwendung[Bearbeiten]

Besonders problematisch ist die Anwendung des D’Hondt-Verfahrens, wenn das Gesamtwahlgebiet in Untergebiete gegliedert und dort jeweils eine feste Anzahl von Abgeordneten gewählt wird. Die Anwendung des D’Hondt-Verfahrens führt dann entsprechend der Anzahl der Untergebiete zu einer Vervielfachung des Effekts der Benachteiligung kleinerer Parteien.

Die Bundestagswahlen 1949 und 1953 waren solche Fälle. Jedes Bundesland bildete (1953 abgesehen von der Sperrklauselregelung) ein in sich geschlossenes, selbständiges Wahlgebiet, in dem doppelt so viele MdB (zzgl. möglicher Überhangmandate) gewählt wurden, wie es Wahlkreise gab.

Weblinks[Bearbeiten]