Helmholtz-Theorem

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Das Helmholtz-Theorem, auch Helmholtz-Zerlegung, Stokes-Helmholtz-Zerlegung[1] oder Fundamentalsatz der Vektoranalysis, (nach Hermann von Helmholtz) besagt, dass für gewisse Gebiete \Omega\subset\R^n der L^p-Raum als direkte Summe von divergenzfreien Funktionen und Gradientenfeldern geschrieben werden kann.

Definitionen[Bearbeiten]

Für ein Gebiet \Omega\subset\R^n wird L^p_\sigma(\Omega)=\overline{\{u\in C_c^\infty(\Omega): \nabla\cdot u=0\}}^{\|\cdot\|_p} der Raum der divergenzfreien Funktionen genannt, wobei C_c^\infty(\Omega) der Raum der Testfunktionen ist und \|\cdot\|_p die p-Norm bezeichnet. Die Zerlegung

L^p(\Omega)=L^p_\sigma(\Omega) \oplus G_p

mit G_p=\{u=\nabla\phi: \phi\in L^1_\text{loc}(\Omega) \ \text{und}\  \nabla\phi \in L^p(\Omega)\} wird Helmholtz-Zerlegung genannt, insofern die Zerlegung existiert. In diesem Fall gibt es eine Projektion P mit PL^p(\Omega)=L^p_\sigma(\Omega), die sog. Helmholtz-Projektion.

Ist \Omega der Halbraum, ein beschränktes Gebiet mit C^2-Rand oder ein Außenraum mit C^2-Rand, so existiert die Zerlegung. Für p=2 existiert die Zerlegung für beliebige Gebiete mit C^2-Rand.[2]

Hat \Omega einen C^1-Rand, gilt L^p_\sigma(\Omega)=\{u\in L^p(\Omega): \operatorname{div} u=0 \ \text{und}\  u\cdot \nu=0 \ \text{auf}\  \partial\Omega\}, wobei \nu die äußere Normale ist.

Mathematische Anwendung[Bearbeiten]

In der Lösbarkeitstheorie der Navier-Stokes-Gleichungen spielt die Helmholtz-Projektion eine wichtige Rolle. Wird die Helmholtz-Projektion auf die linearisierte inkompressiblen Navier-Stokes-Gleichungen angewandt, erhält man die Stokes-Gleichung

u_t-P\Delta u=f

für u,f\in L^p_\sigma(\Omega). Gab es zuvor zwei Unbekannte, nämlich u und p, gibt es jetzt nur noch eine Unbekannte. Beide Gleichungen, die Stokes- und die linearisierte Gleichung, sind jedoch äquivalent.

Der Operator P\Delta wird Stokes-Operator genannt.

Physikalische Betrachtung[Bearbeiten]

Das Helmholtz-Theorem besagt, dass es möglich ist, ein (fast) beliebiges Vektorfeld \mathbf{f}(\mathbf{r}) als Superposition eines rotationsfreien (wirbelfreien) Feldes \mathbf{a}(\mathbf{r}) und eines divergenzfreien (quellenfreien) Feldes \mathbf{b}(\mathbf{r}) darzustellen. Ein rotationsfreies Feld lässt sich jedoch wiederum durch ein skalares Potential \phi(\mathbf{r}) darstellen, ein divergenzfreies Feld durch ein Vektorpotential \mathbf{A}(\mathbf{r}).

\mathbf{a}(\mathbf{r}) = -\operatorname{grad}(\phi(\mathbf{r}))

und

 \mathbf{b}(\mathbf{r}) = \operatorname{rot}(\mathbf{A}(\mathbf{r}))

dann folgt

\operatorname{rot}(\mathbf{a}(\mathbf{r})) = -\operatorname{rot}(\operatorname{grad}(\phi(\mathbf{r})))\equiv 0

und

 \operatorname{div}(\mathbf{b}(\mathbf{r})) =  \operatorname{div}(\operatorname{rot}(\mathbf{A}(\mathbf{r})))\equiv 0

Es ist also möglich das Vektorfeld \mathbf{f}(\mathbf{r}) durch Superposition (Addition) zweier unterschiedlicher Potentiale \phi(\mathbf{r}) und \mathbf{A}(\mathbf{r}) auszudrücken (das Helmholtz-Theorem).

\mathbf{f}(\mathbf{r}) = \mathbf{a}(\mathbf{r}) + \mathbf{b}(\mathbf{r}) = -\operatorname{grad}(\phi(\mathbf{r})) + \operatorname{rot}(\mathbf{A}(\mathbf{r}))

Die beiden einander ergänzenden Potentiale lassen sich durch die folgenden Integrale aus dem Feld \mathbf{f}(\mathbf{r}) gewinnen:

\phi(\mathbf{r}) = \frac{1}{4\pi}\int_V   \frac{\operatorname{div}(\mathbf{f}(\mathbf{r}'))}{|\mathbf{r}-\mathbf{r}'|}\mathrm{d}^3r'
\mathbf{A}(\mathbf{r}) =  \frac{1}{4\pi}\int_V \frac{\operatorname{rot}(\mathbf{f}(\mathbf{r}'))}{|\mathbf{r}-\mathbf{r}'|} \mathrm{d}^3r'

Wobei V das die Felder enthaltende Volumen ist.

Die mathematische Voraussetzung für die Anwendung des Helmholtzschen Theorems ist neben der Differenzierbarkeit des Vektorfelds \mathbf{f}(\mathbf{r}), dass es für r \to \infty schneller als \frac{1}{r} gegen 0 geht, also \lim_{r \to \infty} \mathbf{f}(\mathbf{r}) r = 0. Ansonsten divergieren die obigen Integrale, lassen sich also nicht mehr berechnen.

Dieses Theorem ist besonders in der Elektrodynamik von Interesse, da sich mit seiner Hilfe die Maxwell-Gleichungen im Potentialbild schreiben und einfacher lösen lassen. Für alle physikalisch relevanten Probleme sind dabei die mathematischen Voraussetzungen erfüllt.

Redundanz[Bearbeiten]

Während das ursprüngliche Vektorfeld an jedem Punkt von \Omega durch n Komponenten zu beschreiben ist, sind für das skalare und das Vektorpotential zusammen n+1 Komponenten nötig. Diese Redundanz lässt sich für n=3 beseitigen, indem der quellfreie Anteil des Vektorfeldes der toroidal-poloidalen Zerlegung unterworfen wird, wodurch letztlich insgesamt drei Skalarpotentiale zur Beschreibung ausreichen.

Einzelnachweise[Bearbeiten]

  1.  Tribikram Kundu: Ultrasonic and Electromagnetic NDE for Structure and Material Characterization. CRC Press, 2012, ISBN 1439836639, S. 37 (eingeschränkte Vorschau in der Google-Buchsuche).
  2. G. P. Galdi, An introduction to the mathematical theory of the Navier-Stokes equations. Vol. I, Springer Tracts in Natural Philosophy, vol. 38, Springer-Verlag, New York, 1994, ISBN 0-387-94172-X