j-Funktion

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
j-Funktion in der komplexen Ebene (ohne Faktor 12^3)

Die j-Funktion oder absolute Invariante spielt eine wichtige Rolle in der Theorie der elliptischen Funktionen und Modulformen.

Definition[Bearbeiten]

Für \tau\in\mathbb{H}=\{z\in\mathbb{C};\Im(z)>0\} ist

j(\tau):=12^3\cdot\frac{g_2^3(\tau)}{\Delta(\tau)},

dabei ist \Delta(\tau):= g_2^3(\tau)-27g_3^2(\tau) die Diskriminante; g_2(\tau)=60G_4(\tau) und g_3(\tau)=140G_6(\tau) sind die Eisensteinreihen zum Gitter \mathbb{Z}\tau+\mathbb{Z}.

Eigenschaften[Bearbeiten]

Die j-Funktion ist holomorph auf \mathbb{H}, die Bezeichnung absolute Invariante erklärt sich aus dem Transformationsverhalten unter den Substitutionen der Modulgruppe \Gamma :=SL_2(\mathbb{Z})=\{\begin{pmatrix} a & b \\ c & d \end{pmatrix}\mid a,b,c,d\in\mathbb{Z}, ad-bc=1\}, es gilt nämlich:

j\left( \frac{a\tau+b}{c\tau+d}\right) = j(\tau), d. h. j ist eine Modulfunktion.

Die j-Funktion bildet \mathbb{H} surjektiv auf \mathbb C ab. Für Punkte z,w\in\mathbb{H} gilt j(z)=j(w) dann und nur dann wenn es eine komplexe Zahl a\in\mathbb{C}^* gibt, die das Gitter \mathbb{Z}+z\mathbb{Z} auf das Gitter \mathbb{Z}+w\mathbb{Z} überführt, also genau dann wenn die Quotienten \mathbb{C}/(\mathbb{Z}+z\mathbb{Z}) und \mathbb{C}/(\mathbb{Z}+w\mathbb{Z}) als elliptische Kurven isomorph sind.

Fourierentwicklung[Bearbeiten]

Die j-Funktion lässt sich in eine Fourierreihe entwickeln:

j(\tau)=\frac1q+744+196884q+21493760q^2+864299970q^3+\ldots=\sum_{n=-1}^\infty c_nq^n

mit q=\mathrm e^{2\pi\mathrm i\tau}.

Alle Fourierkoeffizienten c_n:

1, 744, 196884, 21493760, \dots (Folge A000521 in OEIS)

sind natürliche Zahlen. Für ihr Wachstum gilt die asymptotische Formel

c_n\cong\frac{e^{4\pi \sqrt{n}}}{\sqrt{2}n^{3/4}},

die 1932 von Petersson und unabhängig davon 1938 von Rademacher bewiesen wurde.

Die Fourierkoeffizienten sind Linearkombinationen der Dimensionen der irreduziblen Darstellungen der Monstergruppe mit kleinen ganzzahligen Koeffizienten. Dies folgt aus einer tiefen mathematischen Beziehung, die von McKay, Conway, Norton vermutet und von Richard Borcherds bewiesen wurde („monstrous moonshine“).

Literatur[Bearbeiten]

Weblinks[Bearbeiten]