Jensensche Ungleichung

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Die jensensche Ungleichung ist eine elementare Ungleichung für konvexe und konkave Funktionen. Sie ist wegen ihrer Allgemeinheit Grundlage vieler bedeutender Ungleichungen, vor allem in der Analysis und Informationstheorie. Die Ungleichung ist nach dem dänischen Mathematiker Johan Ludwig Jensen benannt, der sie am 17. Januar 1905 bei einer Konferenz der Dänischen Mathematischen Gesellschaft präsentierte.[1] Unter etwas anderen Voraussetzungen findet sie sich bereits 1889 bei Otto Hölder.[2]

Die jensensche Ungleichung besagt, dass der Funktionswert einer konvexen Funktion an einer endlichen Konvexkombination von Stützstellen stets kleiner oder gleich einer endlichen Konvexkombination von den Funktionswerten der Stützstellen ist. Dies bedeutet insbesondere, dass das gewichtete arithmetische Mittel der Funktionswerte an n Stellen größer oder gleich dem Funktionswert am Mittel dieser n Stellen ist.

Satz[Bearbeiten]

Für eine konvexe Funktion f\; und für nichtnegative \lambda_i\; mit \sum_{i=1}^n \lambda_i = 1 gilt:

f\left(\sum_{i=1}^n\lambda_i x_i\right) \leq \sum_{i=1}^n \lambda_i f\left(x_i\right).

Beweis per Induktion[Bearbeiten]

Verwendet man die heute übliche Definition von „konvex“, dass

 f(\lambda x+(1-\lambda)y) \le \lambda f(x)+(1-\lambda)f(y)

für alle reellen \lambda zwischen 0 und 1 gelte, so ergibt sich die jensensche Ungleichung einfach durch vollständige Induktion über die Anzahl der Stützstellen.

Beweis von Hölder[Bearbeiten]

Hölder verwendete den Begriff konvex noch nicht und zeigte, dass aus f''\ge 0 bzw. f'\; monoton steigend die Ungleichung

f\left(\frac{\sum_{i=1}^n a_i x_i}{\sum_{i=1}^n a_i}\right) \le \frac{\sum_{i=1}^n a_i f\left(x_i\right)}{\sum_{i=1}^n a_i}

für positive a_i\; folgt, wobei er dies im Wesentlichen mit dem Mittelwertsatz der Differentialrechnung bewies.[2]

Beweis von Jensen[Bearbeiten]

Jensen ging von der schwächeren Definition

f\left(\frac{x+y}{2}\right)\leq\frac{f(x)+f(y)}{2}

aus und zeigte unter ausdrücklichem Verweis auf den cauchyschen Beweis der Ungleichung vom arithmetischen und geometrischen Mittel mit Vorwärts-Rückwärts-Induktion, dass daraus die Beziehung

f\left(\frac{\sum_{i=1}^n x_i}{n}\right)\leq\frac{\sum_{i=1}^n f\left(x_i\right)}{n}

für beliebige natürliche Zahlen n\; folgt. Daraus folgerte er dann weiter, dass

f\left(\frac{\sum_{i=1}^n k_i x_i}{\sum_{i=1}^n k_i}\right)\leq\frac{\sum_{i=1}^n k_i f\left(x_i\right)}{\sum_{i=1}^n k_i}

für natürliche Zahlen k_i\; und somit

f\left(\sum_{i=1}^n \lambda_i x_i\right)\leq\sum_{i=1}^n \lambda_i f\left(x_i\right)

für beliebige rationale und, sofern f\; stetig ist, auch reelle Zahlen \lambda_i\; zwischen 0 und 1 mit \sum_{i=1}^n \lambda_i=1 gilt.[1]

Varianten[Bearbeiten]

  • Da für konkave Funktionen f\; die Funktion -f\; konvex ist, gilt für konkave Funktionen die jensensche Ungleichung in umgekehrter Richtung, d. h., für jede konkave Funktion f\; und für positive \lambda_i\; mit \sum_{i=1}^n \lambda_i = 1 gilt:
f\left(\sum_{i=1}^n\lambda_i x_i\right) \geq \sum_{i=1}^n \lambda_i f(x_i).
  • Die stetige Variante der jensenschen Ungleichung für eine im Bild von y: [a,b]\to\R konvexe Funktion f\; lautet
f\left(\frac{1}{b-a}\int_a^b y(x) \, dx\right) \le \frac1{b-a}\int_a^b f\left(y(x)\right)\, dx.
  • Die stetige und die diskrete Variante lässt sich in der maßtheoretischen Variante zusammenfassen: Ist \left(\Omega,A,\mu\right) Maßraum mit \mu(\Omega) = 1\; und ist y\; eine μ-integrierbare reellwertige Funktion, so gilt für jede im Bild von y\; konvexe Funktion f\; die Ungleichung
f\left(\int_{\Omega} y\, d\mu\right) \le \int_\Omega f \circ y\, d\mu.
f(E(X)) \le E(f(X)).

Anwendungen[Bearbeiten]

Die jensensche Ungleichung lässt sich beispielsweise zum Beweis der Ungleichung vom arithmetischen und geometrischen Mittel und der Ky-Fan-Ungleichung verwenden.

Weblinks[Bearbeiten]

Einzelnachweise[Bearbeiten]

  1. a b Johan Ludwig William Valdemar Jensen: Sur les fonctions convexes et les inégalités entre les valeurs moyennes. In Acta Math. 30, Seite 175–193, 1906.
  2. a b  Otto Hölder: Ueber einen Mittelwerthssatz. In: Nachrichten von der Königl. Gesellschaft der Wissenschaften und der Georg-Augusts-Universität zu Göttingen. Aus dem Jahre 1889., Nr. 1-21, Dieterichsche Verlags-Buchhandlung, Göttingen 1889, S. 38ff. (in Wikisource, abgerufen am 24. März 2012).