Kryptologische Hashfunktion

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Eine kryptologische Hashfunktion oder kryptographische Hashfunktion ist eine spezielle Form der Hashfunktion, welche kollisionsresistent oder eine Einwegfunktion (oder beides) ist.

Eine Hashfunktion ist eine Funktion, die eine Zeichenfolge beliebiger Länge auf eine Zeichenfolge mit fester Länge abbildet. Mathematisch ist diese Funktion nicht injektiv (linkseindeutig) und nicht notwendigerweise surjektiv (rechtstotal).

Anwendungen von kryptologischen Hashfunktionen sind vor allem die Datenverarbeitung, zur Integritätsprüfung von Dateien oder Nachrichten. Darüber hinaus werden sie eingesetzt zur Verschleierung von Passwortdateien, als Datenbasis digitaler Signaturen, als Pseudo-Zufallszahlengeneratoren oder zur Konstruktion von Blockchiffren.

Klassifizierung[Bearbeiten]

Kryptologische Hashfunktionen werden in schlüssellose und schlüsselabhängige eingeteilt.[1]

  • Schlüssellose Hashfunktionen (kurz Hashfunktionen) werden ferner unterteilt in Einweg-Hashfunktionen (englisch: One-Way Hash Function oder OWHF) und kollisionsresistente Hashfunktionen (englisch: Collision Resistant Hash Functions, CRHFs).
  • Schlüsselabhängige Hashfunktionen werden auch Message Authentication Codes (MAC) genannt. Zu diesen zählen Konstrukte wie HMAC, CBC-MAC oder UMAC.

Eine OWHF erfüllt folgende Bedingungen:

  1. Einwegfunktion: Es ist praktisch unmöglich, zu einem gegebenen Ausgabewert y einen Eingabewert x zu finden, den die Hashfunktion auf y abbildet: h(x)=y (englisch: preimage resistance).
  2. schwache Kollisionsresistenz: es ist praktisch unmöglich, für einen gegebenen Wert x einen davon verschiedenen x' zu finden, der denselben Hashwert h(x)=h(x')\;,\; x \ne x' ergibt (englisch: 2nd-preimage resistance).

Für eine CRHF gilt zusätzlich:

  1. starke Kollisionsresistenz: es ist praktisch unmöglich, zwei verschiedene Eingabewerte x und x' zu finden, die denselben Hashwert ergeben (englisch: collision resistance). Der Unterschied zur schwachen Kollisionsresistenz besteht darin, dass hier beide Eingabewerte x und x' frei gewählt werden dürfen.

Man kann zusätzlich eine Resistenz gegen Beinahe-Kollision fordern (englisch: near-collision resistance). Hierbei sollte es schwierig sein, zwei verschiedene Eingabewerte x und x' zu finden, deren Hashwerte h(x) und h(x') sich nur in wenigen Bits unterscheiden.

Konstruktion[Bearbeiten]

Die Merkle-Damgård-Konstruktion erzeugt den Hashwert aus den Nachrichtenblöcken durch wiederholte Anwendung der Kompressionsfunktion

Die meisten Hashfunktionen, die vor 2010 entwickelt wurden, folgen der Merkle-Damgård-Konstruktion und sind iterierte Kompressionsfunktionen. In Folge des SHA-3-Wettbewerbs wurde die Merkle-Damgård-Konstruktion durch verschiedene Konstruktionsmethoden ersetzt oder erweitert. Eine Kompressionsfunktion nimmt als Eingabe zwei Bitfolgen der Länge n und gibt eine Bitfolge der Länge n aus. Zusätzlich ist sie eine Einwegfunktion, es sollte also schwer sein, zu einer gegebenen Ausgabe passende Eingabewerte zu finden. Oft wird eine Blockchiffre als Kompressionsfunktion benutzt, die Eingaben werden dann als Nachricht und Schlüssel benutzt.

Bei der Merkle-Damgård-Konstruktion wird die eingegebene Nachricht M zuerst in Blöcke fester Länge geteilt und mit zusätzlichen Bits aufgefüllt, so dass die Eingabelänge ein ganzzahliges Vielfaches der Blocklänge beträgt. Die Kompressionsfunktion hat als Input einen Nachrichtenblock und den Output der vorherigen Nachrichtenblöcke. Der Hashwert der gesamten Nachricht ist der Hashwert des letzten Blocks:

\begin{align}
H\left(0\right)  & = IV \\
H\left(i \right) & = f\left(M\left(i \right),H\left(i-1\right)\right), \qquad i=1,2,\dotsc,t \\
h\left(M \right) & = H(t)
\end{align}

IV bezeichnet einen Startwert (initial value).

Iterierte Hashfunktionen basieren entweder auf Blockchiffren, auf algebraischen Strukturen oder sind speziell entwickelte Hash-Algorithmen.

Spezielle Hash-Algorithmen[Bearbeiten]

Zu diesen gehören z. B. die MD4-Familie einschließlich SHA und RIPEMD.

Hashfunktionen, die auf einer Blockchiffre basieren[Bearbeiten]

Dabei unterscheidet man Hashfunktionen, deren Hashwert dieselbe Länge hat wie die Blocklänge und jene, deren Hashwert die doppelte Blocklänge hat.

  1. Hash-Länge gleich Blocklänge:
    Sei E_K die Verschlüsselung mit einer Blockchiffre unter dem Schlüssel K, M(i) die Nachrichtenblöcke und H(i) die Hashwerte. Drei verbreitete Konstruktionen sind die folgenden:
    • Matyas-Meyer-Oseas-Variante: H(i)=E_{H(i-1)}(M(i))\oplus M(i)
    • Davies-Meyer-Variante: H(i)=E_{M(i)}(H(i-1))\oplus H(i-1)
    • Miyaguchi-Preneel-Variante: H(i)=E_{H(i-1)}(M(i))\oplus M(i)\oplus H(i-1)
  2. Hash-Länge mit doppelter Blocklänge: Dazu zählen MDC-2 und MDC-4. Sie bestehen im Wesentlichen aus der zwei- bzw. vierfachen Anwendung der Matyas-Meyer-Oseas-Konstruktion.

Hashfunktionen, die auf algebraischen Strukturen basieren[Bearbeiten]

MASH (Modular Arithmetic Secure Hash) verwendet einen RSA-ähnlichen Modulus n=pq, mit p und q Primzahlen. Die Kompressionsfunktion ist im Kern: H(i)=((M(i)\oplus H(i-1)\lor A)^2 mod\ n)\oplus H(i-1)

A: Konstante, \oplus: excl. oder, \lor: incl oder

Angriffe[Bearbeiten]

Angriffe gegen Hashfunktionen können allgemeiner Art sein, und nur von der Bit-Länge des Hashwerts abhängen und den Hash-Algorithmus als Black-Box behandeln. Sie können sich andererseits gegen die Kompressionsfunktion richten. Bei Hashfunktionen, die auf einem Block-Chiffre basieren, kann ein Angriff gegen die zugrundeliegende Block-Chiffrierung erfolgen. Überdies sind Angriffe auf die Implementierung des Hash-Algorithmus möglich.

Black-Box-Angriffe[Bearbeiten]

Black-Box-Angriffe sind Angriffe auf Hashfunktionen, bei denen über die eigentliche Funktionsweise der Hashfunktion nichts bekannt ist. Lediglich die Länge des Hashwerts n wird als bekannt vorausgesetzt und man nimmt an, dass die Hashwerte gleichverteilt sind.

  1. Raten (englisch: 2nd preimage): Der Angreifer wählt zufällig eine Nachricht und vergleicht deren Hashwert mit dem einer gegebenen Nachricht. Die Erfolgsrate bei diesem Vorgehen liegt bei 2^{-n} für einen n Bit langen Hashwert.
  2. Geburtstagsangriff (Kollision): Der Angreifer erzeugt viele Variationen einer echten Nachricht und viele Variationen einer gefälschten Nachricht. Anschließend vergleicht er die beiden Mengen und sucht nach zwei Nachrichten, v_\mathrm{echt} und v_\mathrm{falsch}, die den gleichen Hashwert haben. Eine Kollision ist nach 2^{\frac{n}{2}} Versuchen zu erwarten.

Angriffe auf die Kompressionsfunktion[Bearbeiten]

  1. Meet-in-the-Middle: Der Angreifer erzeugt Variationen der ersten Hälfte einer gefälschten Nachricht und Variationen der zweiten Hälfte. Er berechnet die Hashwerte vorwärts beim Startwert IV beginnend und rückwärts vom Hash-Resultat aus und versucht eine Kollision am Angriffspunkt zu finden. Das heißt er muss die Kompressionsfunktion effizient invertieren können: gegeben H(i+1) ein Paar (H(i), M(i+1)) finden, so dass gilt f(H(i), M(i+1))=H(i+1).
  2. Correcting Block Attack: Der Angreifer ersetzt alle Blöcke einer Nachricht bis auf einen – etwa den ersten. Anschließend legt er diese Variable so fest, dass sie im Laufe der Verkettung den gewünschten Gesamt-Hashwert liefert.
  3. Fixed Point Attack: Der Angreifer sucht nach einem H(i-1) und M(i), so dass f(M(i), H(i-1))=H(i-1). In diesem Fall kann er an diesem Punkt Nachrichtenblöcke einfügen, ohne den Hashwert zu ändern.
  4. Differenzielle Kryptoanalyse: Differenzielle Kryptanalyse ist ein Angriff auf Blockchiffriersysteme, die auf Hashfunktionen übertragen werden kann. Hierbei werden Eingabedifferenzen und die korrespondierenden Ausgabedifferenzen untersucht. Eine Differenz von Null entspricht dann einer Kollision.
  5. Boomerang Attack: Der Boomerang Angriff ist eine Erweiterung der differenziellen Kryptanalyse. Er verbindet zwei unabhängige Differentialpfade zu einem Angriff.[2]
  6. Rebound Attack: Die innere Struktur einer Hashfunktion wird als dreiteilig betrachtet, mit E=E(bw)·E(in)·E(iw). Die Inboundphase ist ein Meet-in-the-Middle-Angriff, dem vorwärts wie rückwärts eine differenzielle Kryptanalyse folgt.[3]
  7. Herding: Hierbei bildet der Angreifer aus zahlreichen Zwischenwerten eine Struktur (sog. Diamond Structure). Von jeder der Zwischenwerte ausgehend kann eine Nachricht erstellt werden, die denselben Hashwert H ergibt. Bei einer gegebenen Nachricht P (preimage) sucht der Angreifer einen einzelnen Block, der an P angehängt einen der gespeicherten Zwischenwerte in der Struktur ergibt. Dann erzeugt der Angreifer eine Folge von Nachrichtenblöcken, die diesen Zwischenwert mit H verbinden.[4]

Angriffe auf die Blockchiffrierung[Bearbeiten]

Schwachstellen eines Blockchiffrierverfahrens, die, solange das Verfahren zur Verschlüsselung verwendet wird, eigentlich irrelevant sind, können bedeutende Auswirkungen haben, wenn es zur Konstruktion eines Hash-Verfahrens herangezogen wird. Diese wären z. B. schwache Schlüssel oder eine Komplementäreigenschaft.

Übersicht von Hashfunktionen[Bearbeiten]

Snefru
wurde 1990 von Ralph Merkle entworfen. Der Kern der Hashfunktion ist ähnlich dem Blockchiffriersystem Khafre (Merkle). Snefru gilt als unsicher.
N-Hash
wurde 1990 bei Nippon Telephone and Telegraph entwickelt. Der Algorithmus ähnelt dem Blockchiffriersystem FEAL (Nippon T&T). N-Hash gilt als unsicher.[5]
FFT-Hash
ist eine Hashfunktion auf der Basis der Fast-Fourier-Transformation. Sie wurde von Schnorr 1991 erstmals vorgestellt, aber bald geknackt.[6] Später folgte eine zweite Version.[7] Sie gilt als unsicher.
MD4
wurde 1990 von Ronald Rivest entwickelt.[8] Sie erzeugt nach drei Runden einen 128 Bit langen Hashwert. Zu Beginn wird die Länge der Nachricht auf ein ganzzahliges Vielfaches von 512 Bit gebracht. Dazu wird sie mit einer „1“ und entsprechend vielen „0“ aufgefüllt, so dass M \equiv 448\mod 512 beträgt. Ihr wird die Länge der ursprünglichen Nachricht in 64-Bit-Darstellung angehängt. Als Nächstes wird der Puffer initialisiert. Die Hauptschleife besteht aus drei Runden mit je 16 Schritten. Jede Runde erhält als Eingabe einen 512-Bit langen Nachrichtenblock und den 128-Bit langen Pufferinhalt. Jede Runde benutzt 16mal eine nichtlineare Rundenfunktion. Der ausgegebene Hashwert ist die Konkatenierung der letzten 32-Bit words im Puffer.[9] MD4 gilt als unsicher.
MD5
1992 veröffentlichte Rivest ein verbessertes Hash-Verfahren noch bevor eine ernsthafte Schwäche von MD4 aufgedeckt wurde.
Die wesentlichen Veränderungen sind: MD5 hat eine vierte Runde. Die vierte Runde hat eine neue Rundenfunktion; die der zweiten Runde wurde durch eine neue Funktion ersetzt. Die additiven Konstanten wurden neu definiert.
Der erste partielle Angriff auf MD5 von 1993 findet Pseudokollisionen, d. h. es können zu einem Nachrichtenblock zwei sich in nur wenigen Bits voneinander unterscheidende Verkettungsvariablen V1 und V2 gefunden werden, die denselben Output ergeben.[10] Der Angriff hat allerdings keine schwerwiegenden Konsequenzen. Ein neuer effizienter Angriff erfolgte 2005.[11] Hierbei suchten die Autoren nach einem Nachrichtenpaar mit je zwei Blöcken, die nach Verarbeitung des zweiten Blocks eine Kollision erzeugen. MD5 gilt als unsicher.
SHA
Das NIST schlug 1993 den Secure Hash Algorithm (SHA) vor. Zwei Jahre später wurde es durch SHA-1 ersetzt. SHA-1 unterscheidet sich von seinem Vorgänger nur durch eine zusätzliche 1-Bit-Rotation.
Die Nachricht wird wie bei MD4 aufgefüllt. Der Puffer wird mit fünf Konstanten initialisiert. Die Hauptschleife besteht aus vier Runden mit je 20 Schritten.
1998 wurde eine differentielle Analyse gegen SHA-0 und SHA-1 durchgeführt.[12]
2002 wurden vom NIST drei weitere Varianten des Algorithmus veröffentlicht, die größere Hashwerte erzeugen. Es handelt sich dabei um den SHA-256, SHA-384 und SHA-512 wobei die angefügte Zahl jeweils die Länge des Hashwerts in Bit angibt.
2004 ist ein verbesserter Angriff auf SHA-0 beschrieben.[13] Hier fanden die Autoren Beinahe-Kollisionen, sowie Kollisionen für eine auf 65 Runden reduzierte Version von SHA. Ein Jahr später berichten dieselben Autoren von einem Angriff auf die volle Rundenzahl von SHA-0 mit einer Komplexität von 251.[14] Im selben Jahr gelingt ein verbesserter Angriff gegen SHA-0 mit einer Komplexität von 239 Hash-Operationen[15] und gegen SHA-1 mit einer Komplexität von 269.[16] NIST rät mittlerweile vom langfristigen Einsatz des SHA-1 ab.
RIPEMD
RIPE-MD wurde 1992 im Rahmen des Projekts RACE Integrity Primitives Evaluation (RIPE) der Europäischen Union entwickelt. 1996 wurde die ursprüngliche Hashwert-Länge von 128 auf 160 Bits erweitert.[17] Außerdem wurden die Varianten RIPEMD-256 und RIPEMD-320 eingeführt.
Die Nachricht wird wie bei MD4 aufgefüllt. Der Puffer wird mit fünf Konstanten initialisiert. Die Hauptschleife besteht aus fünf Runden mit je 16 Schritten. Der Algorithmus läuft in zwei Ausführungen parallel. Nach jedem Block werden die beiden Ausgabewerte beider Linien zu den Verkettungsvariablen addiert.
Im ursprünglichen RIPEMD konnten mit einer Komplexität von 2^{16} Kollisionen gefunden werden[18], so dass es nicht verwendet werden sollte.
HAVAL
wurde 1992 vorgestellt und gehört ebenfalls zur MD4-Familie. Die Nachrichten werden in 1024-Bit langen Blöcken verarbeitet. Der Hashwert kann 128, 160, 192, 224 oder 256 Bit lang sein. Auch die Rundenzahl kann von drei bis fünf variieren. Jede Runde besteht aus 16 Schritten.[19]
2003 konnte für HAVAL mit drei Runden Kollisionen gefunden werden. Der Angriff gelingt gegen alle möglichen Ausgabelängen. Die Komplexität entspricht dabei 2^29 Rechenschritten der Kompressionsfunktion. HAVAL sollte deswegen nicht für Applikationen verwendet werden, die Kollisionsresistenz erfordern.[20]
TIGER
wurde 1996 von Anderson und Biham entwickelt. Nachrichtenpadding ist wie bei MD4, d. h. der Nachricht wird eine „1“ plus eine Folge von „0“, sowie die Nachrichtenlänge als ein 63-Bit Word angehängt. Das Resultat wird in 512-Bit lange Blöcke geteilt. Der Hashwert enthält 192 Bits. Aus Gründen der Kompatibilität sind TIGER/128 oder TIGER/160 definiert, die die ersten 128, bzw. 160 Bits von TIGER/192 verwenden.[21]
PANAMA
ist von Daemen und Clapp und stammt aus 1998.[22] Es verarbeitet Nachrichtenblöcke mit 256 Bit Länge und gibt einen Hashwert mit 256 Bit aus. Der Puffer ist ein lineares Schieberegister mit 32 Zuständen mit je acht Words.
Einer der Autoren konnte Kollisionen in nur 26 Auswertungen der Update-Funktion erzeugen, so dass Panama nicht als kollisionsresistent gelten kann.[23]
Whirlpool
wurde von Rijmen und Barreto entworfen. Es beruht auf dem Miyaguchi-Preneel-Schema.
Die Nachricht wird wie bei MD4 aufgefüllt. Die aufgefüllte Nachricht wird in 512-Bit lange Blöcke geteilt. Der Hashwert ist 512 Bit lang. Whirlpool verwendet als Funktion eine AES-Variante in 10 Runden.[24]
SMASH
wurde 2005 von Knudsen entwickelt. Nach dem Nachrichtenpadding zu Beginn wird die Nachricht wahlweise in 256-Bit oder 512-Bit langen Blöcken verarbeitet und liefert einen 256-Bit, bzw. 512-Bit langen Hashwert. Die Hauptrunde besteht aus mehreren Runden, die H-Runden und L-Runden genannt werden. Drei verschiedene H-Runden sind definiert. Jede H-Runde enthält eine eigene S-Box (Substitutionstabelle), die an die des Blockchiffrierverfahrens Serpent angelehnt sind. In der L-Runde werden Links- oder Rechtsverschiebungen durchgeführt.[25]
SMASH wurde bald erfolgreich angegriffen und gilt als unsicher.[26]
FORK-256
wurde beim Cryptographic Hash Workshop von Hong et al. vorgestellt. Es verarbeitet 512-Bit lange Nachrichtenblöcke unterteilt in 16 Words und liefert einen 256-Bit langen Hashwert. Die Hauptschleife besteht aus vier Verzweigungen und acht Schritten je Zweig.[27]
SHA-3 (Keccak)
Das Design-Prinzip von SHA-3 unterscheidet sich von den Hash-Funktionen der MD-Gruppe einschließlich SHA-2. Es ist eine sog. sponge construction (Schwamm-Konstruktion). Die Sponge-Konstruction ist eine iterative Funktion, bei der der State (Anzahl Bits im internen Zustand) größer ist als das Output (Ausgabebits). Damit sollen generische Angriffe wie etwa eine Kollision mit Komplexität unter 2^{n/2} abgewehrt werden.
BLAKE
2008 von Jean-Philippe Aumasson, Luca Henzen, Willi Meier und Raphael C.-W. Phan entwickelt; war einer der Finalisten im SHA-3-Auswahlverfahren.

Siehe auch[Bearbeiten]

Literatur[Bearbeiten]

  • Alfred J. Menezes, Paul C. van Oorschot, Scott A. Vanstone: Handbook of Applied Cryptography. CRC Press, 1996, S. 321-384.
  • Bart Preneel: Cryptographic Primitives for Information Authentication – State of the Art. State of the Art in Applied Cryptography, LNCS 1528, Springer-Verlag, 1998, S. 49-104.
  • Douglas R. Stinson: Cryptography – Theory and Practice. Chapman&Hall/CRC, 2002, S. 117-154.

Weblinks[Bearbeiten]

Einzelnachweise[Bearbeiten]

  1.  Alfred Menezes, Paul van Oorschot, Scott Vanstone: Handbook of Applied Cryptography. CRC Press, 1996, Kap. 9, S. 324 (http://cacr.uwaterloo.ca/hac/about/chap9.pdf).
  2. Antoine Joux, Thomas Peyrin: Hash Functions and the (Amplified) Boomerang Attack. Advances in Cryptology-CRYPTO2007, LNCS4622, Springer-Verlag, 2007, S. 244-263
  3. Florian Mendel, Christian Rechberger, Martin Schlaffer, Soren S. Thomsen: The Rebound Attack: Cryptanalysis of Reduced Whirlpool and Grostl. Fast Software Encryption, LNCS5665, Springer-Verlag, 2009, S. 260-276
  4.  John Kelsey and Tadayoshi Kohno: Herding Hash Functions and the Nostradamus Attack. (http://eprint.iacr.org/2005/281.pdf).
  5. Bruce Schneier: Angewandte Kryptographie. Addison-Wesley, 1996, S. 491–524
  6. Serge Vaudenay: FFT-Hash is not yet Collision-free. Advances in Cryptology-CRYPTO 92, LNCS 740, Springer-Verlag, 1993, S. 587–593.
  7. Claus-Peter Schnorr, Serge Vaudenay: Parallel FFT-Hashing, Fast Software Encryption, LNCS 809, Springer-Verlag, 1994, S. 149–156.
  8. Ronald L. Rivest: The MD4 Message Digest Algorithm, Advances in Cryptology-CRYPTO 90, LNCS 537, Springer Verlag, 1991, S. 303–311.
  9. William Stallings: Cryptography and Network Security. Prentice Hall, 1999, S. 271–297.
  10. Bert den Boer, Antoon Bosselaers: Collisions for the Compression Function of MD5, Advances in Cryptology-EUROCRYPT 93, LNCS 765, Springer-Verlag, 1994, S. 293–304.
  11. Xiaoyun Wang, Hongbo Yu: How to Break MD5 and Other Hash Functions, Advances in Cryptology-EUROCRYPT 2005, LNCS 3496, Springer-Verlag, 2005, S. 19–35.
  12. Florent Chabaud, Antoine Joux: Differential Collisions in SHA-0, Advances in Cryptology-CRYPTO 98, LNCS 1462, Springer-Verlag, 1999, S. 56–71.
  13. Eli Biham, Rafi Chen: Near-Collisions of SHA-0, Advances in Cryptology-CRYPTO 2004, LNCS 3152, Springer-Verlag, 2005, S. 290–305.
  14. Eli Biham, Rafi Chen et al.: Collisions of SHA-0 and Reduced SHA-1, Advances in Cryptology-EUROCRYPTO 2005, LNCS 3494, Springer-Verlag, 2005, S. 526–541.
  15. Xiaoyun Wang, Hongbo Yu, Yiqun Lisa Yin: Efficient Collision Search Attacks on SHA-0, Advances in Cryptology-CRYPTO 2005, LNCS 3621, Springer-Verlag, 2006, S. 1–16.
  16. Xiaoyun Wang, Hongbo Yu, Yiqun Lisa Yin: Finding Collisions in the Full SHA-1, Advances in Cryptology-CRYPTO 2005, LNCS 3621, Springer-Verlag, 2006, S. 17–36.
  17. Hans Dobbertin, A. Basselaers, Bart Preneel: RIPEMD-160:A Strengthened Version of RIPEMD, Fast Software Encryption, LNCS 1039, Springer-Verlag, 1996, S. 71–79.
  18. Xiaoyun Wang et al.: Cryptanalysis of the Hash Functions MD4 and RIPEMD, Advances in Cryptology-EUROCRYPT 2005, LNCS 3494, Springer-Verlag, 2005, S. 1–18.
  19. Yuliang Zheng, Josef Pieprzyk, Jennifer Seberry: HAVAL-A one-way hashing algorithm with variable length of output, AUSCRYPT 92, LNCS 718, Springer-Verlag, 1993, S. 83–104.
  20. Bart Van Rompay, Alex Biryukov, Bart Preneel, Joos Vandewalle: Cryptanalysis of 3-Pass HAVAL, Advances in Cryptology-ASIACRYPT 2003, LNCS 2894, Springer-Verlag, 2003, S. 228–245.
  21. Tiger: A Fast New Hash Function (Designed in 1995)
  22. Joan Daemen, Craig Clapp: Fast Hashing and Stream Encryption with PANAMA, Fast Software Encryption, LNCS 1372, Springer-Verlag, 1998, S. 60–74.
  23. Joan Daemen, Gilles van Assche: Producing Collisions for PANAMA, Instantaneously, Fast Software Encryption, LNCS 4593, Springer-Verlag, 2007, S. 1–18.
  24. The WHIRLPOOL Hash Function
  25. Lars R. Knudsen: SMASH-A Cryptographic Hash Function, Fast Software Encryption, LNCS 3557, Springer-Verlag, 2005, S. 228–242.
  26. Norbert Pramstaller, Christian Rechberger, Vincent Rijmen: Smashing SMASH, Cryptology ePrint Archive Report 2005/081
  27. NIST cryptographic hash project