Lagrange-Punkte

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von Lagrange-Punkt)
Wechseln zu: Navigation, Suche

Die Lagrange-Punkte oder Librationspunkte (von lateinisch librare „schwanken“ oder „das Gleichgewicht halten“) sind die Gleichgewichtspunkte des eingeschränkten Dreikörperproblems. Das allgemeine Dreikörperproblem der Himmelsmechanik ist nur numerisch lösbar. Mit der Einschränkung, dass der dritte Körper eine vernachlässigbare Masse hat, fanden Leonhard Euler und Joseph-Louis Lagrange fünf analytische Lösungen: In den nach Lagrange L1 bis L5 genannten Punkten können dritte Körper (z. B. Forschungssatelliten) kräftefrei ruhen. Es handelt sich um Nullstellen des Schwerefeldes in jenem rotierenden Bezugssystem, in dem auch die beiden schweren Himmelskörper (z. B. Sonne und Planet) ruhen. Das heißt, die Gravitationskräfte der beiden Körper auf den Probekörper werden gerade von der Zentrifugalkraft (aufgrund der Rotation des Bezugssystems) aufgehoben. In einem nichtrotierenden Bezugsystem laufen die Lagrange-Punkte synchron mit den beiden Himmelskörpern auf Kreisbahnen um den gemeinsamen Schwerpunkt.

Position der Lagrange-Punkte L1 bis L5 in einem System aus Zentralgestirn (gelb) und Planet (blau). Nummerierung: L4 läuft dem Planeten voraus, L5 hinterher.
Hier sind zusätzlich violett Äquipotentiallinien des Schwerefeldes im mitrotierenden Bezugssystem eingezeichnet (Schnitt in der Umlaufebene als Gummimatten-Modell). Das Massenverhältnis ist 1:10, damit sich die Punkte L1 und L2 deutlich absetzen.[1]

Lage der Lagrange-Punkte[Bearbeiten]

Alle fünf Lagrange-Punkte liegen in der Bahnebene der beiden schweren Körper. Drei liegen auf der Verbindungslinie der beiden Körper, der vierte und fünfte bilden mit den beiden Körpern jeweils die Eckpunkte eines (bis auf relativistische Korrekturen) gleichseitigen Dreiecks. Für das in obigen Grafiken blau-gelbe Paar von Himmelskörpern wird im Folgenden Erde und Sonne als Beispiel verwendet.

L1[Bearbeiten]

Der innere Lagrange-Punkt L1 befindet sich zwischen den beiden betrachteten Körpern auf ihrer Verbindungslinie. Ein Körper, der die Sonne innerhalb der Erdbahn umkreist, würde normalerweise eine höhere Bahngeschwindigkeit haben als die Erde. Durch die Anziehungskraft der Erde wird jedoch die Anziehungskraft der Sonne auf den Körper geschwächt (die beiden Kräfte wirken entgegengesetzt), wodurch in L1 die synchrone Umlaufgeschwindigkeit für das Kräftegleichgewicht ausreicht. Dieser Punkt befindet sich ca. 1,5 Millionen Kilometer von der Erde entfernt in Richtung Sonne.

Der Forschungssatellit ACE in einer Bahn um L1
Beispiel

Der innere Lagrange-Punkt L1 im System Erde-Sonne dient als „Basis“ zur Sonnenbeobachtung. Schon 1978 brach dorthin die Sonde ISEE-3 auf, um ihn bis 1982 zu umkreisen. Sie war die erste Sonde, die einen Lagrangepunkt umkreiste. Seit 1995 umkreist ihn der Sonnenbeobachtungssatellit SOHO mit einem Bündel von zwölf Messinstrumenten. Aus der Sicht des mit der Erdbewegung mitbewegten Bezugssystems umkreist SOHO den Lagrange-Punkt einmal innerhalb von sechs Monaten im Abstand von rund 600.000 km, um bei der Kommunikation nicht von der Sonne gestört zu werden und den Aufwand für Bahnkorrekturen nicht zu groß werden zu lassen. Der Advanced Composition Explorer (ACE) zur Erforschung von Partikeln aus allen möglichen Quellen im Universum (u. a. der Sonne) umkreist den L1 seit Anfang 1998. Auch die Raumsonde Genesis mit Instrumenten zur Erforschung des Sonnenwinds und zum Einfang seiner Partikel war dort von 2001 bis 2004 positioniert.

L2[Bearbeiten]

Die Position von L2

L2 befindet sich hinter dem kleineren der beiden großen Körper auf ihrer Verbindungslinie. Ursache ist ein ähnlicher Effekt wie im Fall des L1. Normalerweise wäre außerhalb der Erdbahn die Umlaufdauer länger als die der Erde. Die zusätzliche Anziehung der Erde (Kräfte von Sonne und Erde auf den Körper sind gleichgerichtet) bewirkt jedoch eine kürzere Umlaufdauer, die im L2 wiederum gleich der Umlaufdauer der Erde ist. Dieser Punkt befindet sich ca. 1,5 Millionen Kilometer außerhalb der Erdbahn.

Beispiel

Der L2-Punkt des Systems Erde-Sonne bietet Vorteile für Weltraumteleskope. Da ein Körper im L2 die Orientierung in Bezug auf Sonne und Erde beibehält, ist dort die Abschirmung vor Sonnenstrahlung wesentlich einfacher als auf einer Erdumlaufbahn. Die WMAP-Raumsonde (Wilkinson Microwave Anisotropy Probe), die die kosmische Hintergrundstrahlung des Urknalls untersuchte, befand sich in einer Umlaufbahn um den L2-Punkt des Systems Erde-Sonne. Die ESA stationierte im September 2009 das Infrarot-Teleskop Herschel und das Teleskop Planck zur Untersuchung der Hintergrundstrahlung dort.[2] Im Januar 2014 erreichte die Astrometrie-Raumsonde Gaia der ESA ebenfalls eine Umlaufbahn um den L2.[3]

L3[Bearbeiten]

L3 befindet sich (von dem kleineren Körper aus gesehen) hinter dem größeren Körper auf ihrer Verbindungslinie etwas außerhalb der Umlaufbahn des kleineren der beiden Körper. Im Fall Sonne-Erde liegt der dritte Lagrange-Punkt auf der uns gegenüberliegenden Seite der Sonne, etwas weiter weg von der Sonne als die Erde. In diesem Punkt bewirken die (gleichgerichteten) kombinierten Anziehungskräfte von Erde und Sonne wieder eine Umlaufdauer, die gleich der der Erde ist.

Beispiel

Der L3-Punkt war in Science-Fiction-Büchern und Comics ein beliebter Platz für eine hypothetische (für uns aufgrund der Sonne nicht sichtbare) „Gegenerde“. Da die Masse einer erdähnlichen „Gegenerde“ in dem System jedoch nicht mehr zu vernachlässigen wäre, handelte es sich hier um ein etwas anders gelagertes Dreikörperproblem und L3 läge aus Symmetriegründen exakt auf der Umlaufbahn der Erde. Prinzipiell wäre auch die Definition der „verschwindend kleinen Masse“ nicht erfüllt.

L4 und L5[Bearbeiten]

Diese beiden Lagrange-Punkte befinden sich jeweils am dritten Punkt eines gleichseitigen Dreiecks, dessen Grundlinie die Verbindungslinie der beiden großen Körper ist. L4 befindet sich in Umlaufrichtung des kleineren der beiden großen Körper vor ihm, L5 hinter ihm. Der L4- und L5-Punkt liegen also 60° vor beziehungsweise 60° hinter dem um den Zentralkörper umlaufenden Körper (annähernd) in seiner Umlaufbahn.

Im Gegensatz zu L1, L2 und L3 sind L4 und L5 stabil, d. h. in ihrer Nähe können sich Körper auch ohne Bahnkorrektur dauerhaft aufhalten. Daher können an diesen Punkten natürliche Objekte erwartet werden. Tatsächlich befinden sich in der Nähe von L4 und L5 eine Vielzahl von Staubwolken und Kleinkörpern, insbesondere auf den Umlaufbahnen der großen Planeten. Asteroiden oder Monde, die sich im näheren Umkreis dieser Punkte befinden, werden von Astronomen auch Trojaner oder Trojaner-Monde genannt. In einer Umlaufbahn um L4 der Erde befindet sich der 2010 entdeckte 2010 TK7.

Beispiele für L4 und L5[Bearbeiten]

Jupitertrojaner[Bearbeiten]

In der Umgebung der Punkte L4 und L5 des Jupiter halten sich die (erstmals bei Jupiter so genannten) Trojaner auf, eine Gruppe von Asteroiden. Sie haben dieselbe Umlaufperiode wie Jupiter, eilen ihm aber im Mittel 60° vor bzw. nach und umkreisen dabei die Punkte L4 und L5 periodisch in weiten Bögen. Bislang sind in L4 und L5 über 3600 beziehungsweise 2000 Trojaner bekannt und in den Asteroidenlisten[4] des Minor Planet Center erfasst, die Gesamtzahl wird auf einige Zehntausend geschätzt. Der erste Trojaner, (588) Achilles, wurde 1906 von Max Wolf entdeckt. Der weitaus größte Trojaner dürfte der 1907 entdeckte (624) Hektor sein, ein unregelmäßig geformter Asteroid von 370 km × 195 km Ausdehnung.

Trojaner anderer Planeten[Bearbeiten]

1990 wurde auch im Librationspunkt L5 des Mars ein Mars-Trojaner entdeckt, der Eureka getauft wurde. Mittlerweile hat man vier weitere Mars-Trojaner entdeckt, davon einen im L4-Punkt. Ende 2001 fand man auch 60° vor Neptun einen Trojaner. Mit dem 4-m-Spiegelteleskop am Cerro Tololo aufgenommen, erhielt der 230-km-Körper den provisorischen Namen 2001 QR322, war aber erst nach einem Jahr „gesichert“. Er umrundet die Sonne – genau wie Neptun – in 166 Erdjahren. 2010 wurde dann auch erstmals ein Neptun-Trojaner im Lagrangepunkt L5, 60° hinter Neptun, nachgewiesen, 2008 LC18.

Erdbegleiter[Bearbeiten]

Für die Erde wurde von Astronomen der Athabasca University in Kanada im Jahr 2010 der bis jetzt einzig bekannte Trojaner entdeckt, der Asteroid 2010 TK7. Die Entdeckung wurde im Juli 2011 veröffentlicht.[5][6] Er bewegt sich um den Lagrange-Punkt L4.

In den 1950ern wurden Staubwolken in den L4- und L5-Punkten des Erde-Sonne-Systems gefunden. In den L4- und L5-Punkten des Systems Erde-Mond wurden ebenfalls sehr schwache Staubwolken gefunden, die Kordylewskischen Wolken, die noch schwächer als der lichtschwache Gegenschein ausgeprägt sind. Jedoch gibt es einige Asteroiden, die sich auf einer sogenannten Hufeisenumlaufbahn zusammen mit der Erde (also einer mittleren Umlaufdauer von einem Jahr) um die Sonne bewegen. Der Übergang von einem Trojaner zu einer Hufeisenbahn ist fließend: Wenn der Abstand eines Trojaners zum L4- oder L5-Punkt zu groß ist, dann wird er einmal auf der Erdbahn den der Erde entgegengesetzten Punkt überschreiten und dann in Richtung des anderen Lagrange-Punktes wandern. Insbesondere die Bahn des am 9. Januar 2002 mit Hilfe der automatischen Himmelsüberwachung LINEAR (Lincoln Near Earth Asteroid Research) entdeckten Asteroiden 2002 AA29 (ein Objekt mit nicht einmal 100 m Durchmesser) ist bemerkenswert. Er umkreist die Sonne auf einer der Erdbahn sehr ähnlichen Umlaufbahn, wobei er vom mit der Erdbewegung mitbewegten Bezugssystem aus gesehen entlang der Erdbahn im Lauf von 95 Jahren einen Bogen von fast 360° beschreibt, den er in weiteren 95 Jahren wieder zurückschwingt. Die Form des Bogens erinnert an ein Hufeisen, daher der Name Hufeisenbahn. Die stabilste derzeit bekannte Hufeisenbahn eines Erdbegleiters besitzt 2010 SO16.

Koorbitale Monde (Trojaner-Monde)[Bearbeiten]

Weitere Trojaner gibt es im Mondsystem des Saturns. So hat der Saturnmond Tethys die kleinen Monde Telesto in seinem L4- und Calypso in seinem L5-Punkt und der Saturnmond Dione hat die Monde Helene in seinem L4- und Polydeuces in seinem L5-Punkt.

Vereinfachtes Modell von Lagrange[Bearbeiten]

Lagrange-Punkte L1 bis L3[Bearbeiten]

Sie lassen sich rechnerisch herleiten, wenn man die drei Massen auf einer Linie anordnet und für die Rotation um den gemeinsamen Schwerpunkt die Summe der Kräfte

  • aus der Zentrifugalwirkung der Rotation um den gemeinsamen Schwerpunkt und
  • aus der gravitativen Anziehung untereinander

gleich 0 setzt.

Lagrange-Punkte L4 und L5[Bearbeiten]

Wenn man drei Körper mit gleicher Masse umeinander auf einer gemeinsamen Kreisbahn rotieren lässt, liegen der Massenmittelpunkt und das Gravizentrum der Anordnung im Mittelpunkt der Kreisbahn. Bei einer bestimmten, vom Abstand der Massen abhängigen Winkelgeschwindigkeit ist jeder der drei Körper kräftefrei und das System befindet sich im Gleichgewicht. Die direkte Gravitationswirkung der drei Körper aufeinander ist dann ausgeglichen, wenn auf der Kreisbahn die drei Körper den gleichen Abstand zueinander einnehmen. Das kann aber nur in einem gleichseitigen Dreieck der Fall sein. Dort ist der Winkel der einzelnen Seiten zueinander gleich und beträgt 60°.

Verändert man nun die Massen, dann wird der gemeinsame Schwerpunkt, um den das System rotiert, zu der schwersten Masse hin verschoben. Die Eigenschaft, dass das Dreieck gleichseitig ist und folglich die Winkel der Massen zueinander 60° sind, wird dadurch aber nicht beeinflusst.

Durch die Verzerrung der Raumzeit durch die Gravitationswirkung gemäß der allgemeinen Relativitätstheorie wird der Raum verzerrt und die Lage der Librationspunkte gestört (nichteuklidische Geometrie mit einer von 180° verschiedenen Winkelsumme in Dreiecken).

Herleitung der Librationspunkte durch Lagrange[Bearbeiten]

Bei vergleichbar großen Massen bewegen sich drei Körper in einem Rotationssystem im Allgemeinen chaotisch umeinander. Anders sieht es aus, wenn entweder die Masse der drei Körper gleich groß oder einer der drei Körper sehr klein gegenüber den beiden anderen ist. Lagrange betrachtete den letzteren Fall. Der erstere ist hingegen gut verwendbar zum Einstieg in das Verständnis des Effekts, der zum Gleichgewicht im letzteren Fall führt:

Lagrange ging in seiner Herleitung davon aus, dass einer der Körper eine verschwindend geringe Masse haben soll, sodass der Masseschwerpunkt nur noch von den beiden schwereren Körpern bestimmt wird und zwischen diesen liegt; außerdem davon, dass die beiden schwereren deutlich unterschiedliche Masse haben, also im Wesentlichen der mittelschwere (Planet) um den schwersten (Sonne) kreist. Außerdem davon, dass auch dann, wenn einer der beiden massereichen Körper der deutlich schwerste (Sonne) ist, dieser Masseschwerpunkt deutlich aus dessen Mittelpunkt herausgeschoben ist. Das bedeutet unter anderem, dass der massereichste Körper (Sonne) aufgrund der Wechselwirkung mit dem zweitschwersten Körper (Planet) deutlich um den gemeinsamen Masseschwerpunkt herum „geschleudert“ werden muss. Genau dann und proportional zu dieser Verschiebung des Masseschwerpunkts passiert es, dass die beiden massereichen Körper am Schwerpunkt vorbei aus entgegengesetzten Richtungen auf den kleinsten Körper im betrachteten System einwirken können – ähnlich dem eingangs betrachteten Rotationssystem mit den drei gleich großen Massen, nur dass der Winkel, unter dem die „Sonne“ auf den betrachteten Kleinkörper am Masseschwerpunkt vorbeiwirkt, extrem klein (aber trotzdem ungleich 0) ist.

Nun zeigt sich, dass im Fall relativ großer Masseverhältnisse erstens wieder eine stabile Bahn der drei Körper zustande kommt und zweitens das Gebilde unabhängig vom konkreten Masseverhältnis immer jenes gleichseitige Dreieck bleibt (nur dass es um einen Schwerpunkt nahe bei der Sonne anstatt genau in der Mitte der drei Körper kreist).

Das Modell ist nicht ohne Weiteres auf Mehrplanetensysteme wie unser Sonnensystem anwendbar. Die Auslenkung der Sonne um ihren Mittelpunkt wird bei uns im Wesentlichen von Jupiter bestimmt. Dieser Planet ist es dann auch, der als einziger etliche Masseteilchen um seine Lagrange-Punkte L4 und L5 herum angesammelt hat. Alle anderen Planeten lenken die Sonne im Verhältnis dazu nur zu Bruchteilen ab, sodass die Bewegung der Sonne aus deren Sicht von einer chaotischen Funktion hoher Amplitude in Bezug auf das Lagrange-Modell überlagert ist. Durch statistische Effekte (unterschiedliche Umlauffrequenzen) und lineare Überlagerung können die Lagrange-Punkte allerdings auch bei den kleineren Planeten wirken.

Stabilität der Lagrange-Punkte[Bearbeiten]

Qualitativer Konturplot des effektiven Potentials Veff(x3, y3) für Testmasse 3 in einem System aus einem Planeten (Erde) und seinem Zentralgestirn (Sonne), in der gemeinsamen Ebene durch die Himmelskörper.
x3 ist nach rechts aufgetragen, y3 nach oben. Die eingezeichneten Linien verbinden Punkte gleichen effektiven Potentials. Die Pfeile repräsentieren den Gradienten des Potentials rund um die Lagrange-Punkte — in rot abwärts in ihre Richtung und in blau in die entgegengesetzte Richtung. L4 und L5 sind die erhöhten Punkte der Potenzialfläche und sind nur dank der Corioliskraft stabil (siehe Erklärung im Text).

Die ersten drei Lagrangepunkte sind nur bezüglich Abweichungen senkrecht zu der Verbindungslinie zwischen den beiden großen Körpern stabil, während sie bezüglich Abweichungen in Richtung dieser Verbindungslinie instabil sind. Am einfachsten kann man das anhand des L1-Punktes sehen. Auf eine Testmasse, die von L1 aus entlang eines der roten Pfeile senkrecht von der Verbindungslinie entfernt wird, wirkt eine Kraft zurück in den Gleichgewichtspunkt (in y-Richtung: anziehende Effektivkraft). Grund dafür ist, dass die waagerechten Kraftkomponenten der beiden großen Körper sich gegenseitig aufheben, während sich ihre senkrechten Kraftkomponenten addieren. Wird hingegen ein Objekt von L1-Punkt aus etwas näher an einen der beiden anderen Körper bewegt (die blauen Pfeile!), so ist die Gravitationskraft des Körpers, dem er näher gekommen ist, größer: Er entfernt sich also vom Gleichgewichtspunkt (in x-Richtung: abstoßende Effektivkraft).

Die Punkte L1 und L2 sind also zwar instabil, aber dennoch von Nutzen, da geringe Korrekturmanöver eines Satelliten ausreichen, um ihn dort zu halten. Ohne diese würde er sich von diesen Punkten entfernen.

Im Gegensatz dazu sind um L4 und um L5 stabile Bahnen möglich, sofern das Massenverhältnis der beiden großen Körper größer als 24,96 ist. Wird ein an diesen Punkten befindlicher kleiner Körper leicht ausgelenkt, so bringt ihn die Corioliskraft aus der Sicht des Bezugssystems, in dem die Lagrangepunkte ruhen, in eine nierenförmige Umlaufbahn um diesen Punkt. Er bleibt also jetzt auch ohne Korrekturmanöver in der Nähe dieser Punkte.

Siehe auch[Bearbeiten]

Literatur[Bearbeiten]

Weblinks[Bearbeiten]

 Wiktionary: Librationspunkt – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen
 Commons: Lagrange-Punkte – Sammlung von Bildern, Videos und Audiodateien

Einzelnachweise[Bearbeiten]

  1. Z. F. Seidov: The Roche Problem: Some Analytics. The Astrophysical Journal, 603:283-284, 1. März 2004.
  2. Vorlage:Internetquelle/Wartung/Zugriffsdatum nicht im ISO-FormatESA News: ESA en route to the origins of the Universe. Abgerufen am 15. Mai 2009.
  3. Gaia enters its operational orbit. ESA News, 8. Januar 2014, abgerufen am 8. Januar 2014 (englisch).
  4. minorplanetcenter.net: List Of Jupiter Trojans
  5. Trojaner-Asteroid: Astronomen finden weiteren Erdbegleiter. Bei: spiegel.de.
  6. Earth’s Trojan asteroid. In: Nature 475, 481–483, doi:10.1038/nature10233.
Dies ist ein als lesenswert ausgezeichneter Artikel.
Dieser Artikel wurde am 24. Dezember 2008 in dieser Version in die Liste der lesenswerten Artikel aufgenommen.