Lithiumiodid

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Kristallstruktur
Struktur von Lithiumiodid
__ Li+     __ I
Kristallsystem

kubisch

Raumgruppe

Fm\bar{3}m

Koordinationszahlen

Li[6], I[6]

Allgemeines
Name Lithiumiodid
Andere Namen

Lithiumjodid

Verhältnisformel LiI
CAS-Nummer
  • 10377-51-2 (wasserfrei)
  • 17023-25-5 (Hydrat)
Kurzbeschreibung

beigefarbener, geruchsloser Feststoff[1]

Eigenschaften
Molare Masse 133,85 g·mol−1
Aggregatzustand

fest

Dichte

3,49 g·cm−3[1]

Schmelzpunkt

446 °C[1]

Siedepunkt

1180 °C[1]

Löslichkeit
  • sehr gut in Wasser (1650 g·l−1 bei 20 °C)[1]
  • sehr gut in Ethanol [2]
Brechungsindex

1,955[3]

Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung [1]
07 – Achtung 08 – Gesundheitsgefährdend

Gefahr

H- und P-Sätze H: 315​‐​319​‐​335
P: 261​‐​302+352​‐​305+351+338​‐​321​‐​405​‐​501Vorlage:P-Sätze/Wartung/mehr als 5 Sätze [1]
EU-Gefahrstoffkennzeichnung [4][1]
Giftig
Giftig
(T)
R- und S-Sätze R: 61​‐​36/37/38
S: 22​‐​26
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen. Brechungsindex: Na-D-Linie, 20 °C

Vorlage:Infobox Chemikalie/Summenformelsuche nicht möglich

Lithiumiodid, LiI, ist das Lithiumsalz der Iodwasserstoffsäure. Neben dem wasserfreien Lithiumiodid existieren noch verschiedene Hydrate, bekannt sind LiI·nH2O mit n= 0,5, 1, 2 und 3.[5]

Gewinnung und Darstellung[Bearbeiten]

Die Herstellung von Lithiumiodid erfolgt durch Umsetzung wässriger Lithiumhydroxid- oder Lithiumcarbonatlösungen mit Iodwasserstoff und anschließender Aufkonzentrierung und Trocknung.[5]

\mathrm{LiOH + \ HI \longrightarrow \ LiI +\ H_2O}
\mathrm{Li_2CO_3 + 2 \ HI \longrightarrow 2 \ LiI +\ H_2O +\ CO_2}

Das wasserfreie Lithiumiodid kann auch durch Reaktion von Lithiumhydrid mit Iod in wasserfreiem Diethylether hergestellt werden.[6]

\mathrm{LiH + I_2 \longrightarrow \ LiI +\ HI}

Eigenschaften[Bearbeiten]

Lithiumiodid bildet farblose, stark hygroskopische Kristalle mit einem Schmelzpunkt von 446 °C, einem Siedepunkt von 1180 °C und einer Dichte von 3,49 g·cm−3. Die molare Masse des wasserfreien Lithiumiodids beträgt 133,85 g/mol. Durch die Oxidation von Iodid zu Iod durch Luftsauerstoff färben sich die Kristalle schnell gelblich bis bräunlich.[5]

Das Trihydrat weist einen Schmelzpunkt von 72 °C auf. Beim Erhitzen verliert es bei 80 °C zwei Moleküle Kristallwasser und bei 300 °C ein Molekül Kristallwasser.[7] Lithiumiodid ist gut in Wasser (1650 g/l Wasser bei 20 °C) und Ethanol löslich.

Die Standardbildungsenthalpie des kristallinen Lithiumiodids beträgt ΔfH0298 = −270,08 kJ/mol.[8]

Verwendung[Bearbeiten]

Das wasserfreie Lithiumiodid wird für organische Synthesen verwendet[5], in Batterien dient es als Elektrolyt.[9] Dotierte Kristalle dienen als Szintillationsdetektor für langsame Neutronen.[10]

Einzelnachweise[Bearbeiten]

  1. a b c d e f g h Eintrag zu Lithiumiodid in der GESTIS-Stoffdatenbank des IFA, abgerufen am 04.08.2008 (JavaScript erforderlich)
  2. G. Milne: Gardner's Commercially Important Chemicals: Synonyms, Trade Names, and Properties. S. 370, Wiley-IEEE, 2005, ISBN 9780471736615.
  3. David R. Lide (Ed.): CRC Handbook of Chemistry and Physics. 90th Edition (Internet Version: 2010), CRC Press/Taylor and Francis, Boca Raton, FL, Index of Refraction of Inorganic Crystals, S. 10-246.
  4. Seit 1. Dezember 2012 ist für Stoffe ausschließlich die GHS-Gefahrstoffkennzeichnung zulässig. Bis zum 1. Juni 2015 dürfen noch die R-Sätze dieses Stoffes für die Einstufung von Gemischen herangezogen werden, anschließend ist die EU-Gefahrstoffkennzeichnung von rein historischem Interesse.
  5. a b c d A. F. Holleman, E. Wiberg, N. Wiberg, Lehrbuch der Anorganischen Chemie 1995, 101. Auflage, de Gruyter. ISBN 3-11-012641-9, S. 1151–1152.
  6. M. D.Taylor, L. R. Grant: New Preparations of Anhydrous Iodides of Groups I and II Metals, in: J. Am. Chem. Soc. 1955, 77, 1507–1508
  7. G. F. Hüttig, F. Pohle: Studien zur Chemie des Lithiums. II. Über die Hydrate des Lithiumjodids, in: Z. anorg. allg. Chem. 1924, 138, 1–12.
  8. Dissertation: "Untersuchung organischer Festkörperreaktionen am Beispiel von Substitutions- und Polykondensationsreaktionen", Oliver Herzberg, Universität Hamburg 2000. Volltext
  9. L. F. Trueb, P. Rüetschi: Batterien und Akkumulatoren - Mobile Energiequellen für heute und morgen., Springer, Berlin 1998 ISBN 3-540-62997-1.
  10. K. P. Nicholson: Some lithium iodide phosphors for slow neutron detection, in: J. Appl. Phys. 1955 , 6, 104–106.