Lokal (Topologie)

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Man sagt in der mathematischen Topologie, eine Eigenschaft topologischer Räume gelte lokal für einen topologischen Raum T, wenn für jede Wahl eines Punktes x in T eine Umgebungsbasis von x existiert, deren Elemente die Eigenschaft haben.

Eine Eigenschaft topologischer Räume heißt lokal, wenn sie mit der zugehörigen lokalen Eigenschaft übereinstimmt.

Beispiele[Bearbeiten]

Lokale Eigenschaften:

Oft ist die lokale Eigenschaft schwächer als die ursprüngliche:

Manchmal ist die lokale Eigenschaft stärker als die ursprüngliche:

Im Allgemeinen ist die lokale Eigenschaft weder stärker noch schwächer:

  • Der Kamm ist wegzusammenhängend, aber nicht lokal wegzusammenhängend, der diskret topologisierte zweielementige Raum ist lokal wegzusammenhängend, aber nicht wegzusammenhängend.
  • Ein System von Teilmengen eines topologischen Raums heißt lokal endlich, falls jeder Punkt eine Umgebung hat, die nur endlich viele der Teilmengen berührt.
  • Ein topologischer Raum ist lokal metrisierbar, falls jeder Punkt eine metrisierbare Umgebung besitzt.

Weblinks[Bearbeiten]