aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Vorhandene Strukturdaten: 3IV9, 3IVA
Eigenschaften des menschlichen Proteins
Masse/Länge Primärstruktur 1227 Aminosäuren
Gen-Name MTR
Externe IDs
EC, Kategorie
Substrat 5-Methyltetrahydrofolat, L-Homocystein
Produkte Tetrahydrofolsäure, L-Methionin
Homologie-Familie HOG000251409
Übergeordnetes Taxon Lebewesen

Die Methionin-Synthase (Gen: MTR) katalysiert den letzten Schritt in der Regeneration von Methionin(Met) aus Homocystein(Hcy) mithilfe des Cofaktors Methylcobalamin bzw. Vitamin B12.


VitaminB12 2.png


  • Li YN, Gulati S, Baker PJ, Brody LC, Banerjee R, Kruger WD (December 1996). "Cloning, mapping and RNA analysis of the human methionine synthase gene". Hum. Mol. Genet. 5 (12): 1851–8. doi:10.1093/hmg/5.12.1851. PMID 8968735.
  • Banerjee RV, Matthews RG (March 1990). "Cobalamin-dependent methionine synthase". FASEB J. 4 (5): 1450–9. PMID 2407589.
  • Zydowsky, T. M. (1986). "Stereochemical analysis of the methyl transfer catalyzed by cobalamin-dependent methionine synthase from Escherichia coli B". Journal of the American Chemical Society 108 (11): 3152–3153. doi:10.1021/ja00271a081.
  • Zhang, Z.; Tian, C.; Zhou, S.; Wang, W.; Guo, Y.; Xia, J.; Liu, Z.; Wang, B.; Wang, X.; Golding, B. T.; Griff, R. J.; Du, Y.; Liu, J. (2012). "Mechanism-based design, synthesis and biological studies of N5-substituted tetrahydrofolate analogs as inhibitors of cobalamin-dependent methionine synthase and potential anticancer agents". European Journal of Medicinal Chemistry 58: 228–236. doi:10.1016/j.ejmech.2012.09.027. PMID 23124219.
  • Matthews, R. G.; Smith, A. E.; Zhou, Z. S.; Taurog, R. E.; Bandarian, V.; Evans, J. C.; Ludwig, M. (2003). "Cobalamin-Dependent and Cobalamin-Independent Methionine Synthases: Are There Two Solutions to the Same Chemical Problem?". Helvetica Chimica Acta 86 (12): 3939. doi:10.1002/hlca.200390329.
  • Wolthers, K. R.; Scrutton, N. S. (2007). "Protein Interactions in the Human Methionine Synthase−Methionine Synthase Reductase Complex and Implications for the Mechanism of Enzyme Reactivation†". Biochemistry 46 (23): 6696–6709. doi:10.1021/bi700339v. PMID 17477549.
  • Pejchal, R.; Ludwig, M. L. (2005). "Cobalamin-Independent Methionine Synthase (MetE): A Face-to-Face Double Barrel That Evolved by Gene Duplication". PLoS Biology 3 (2): e31. doi:10.1371/journal.pbio.0030031. PMC 539065 (freier Volltext). PMID 15630480.
  • Evans, J. C.; Huddler, D. P.; Hilgers, M. T.; Romanchuk, G.; Matthews, R. G.; Ludwig, M. L. (2004). "Inaugural Article: Structures of the N-terminal modules imply large domain motions during catalysis by methionine synthase". Proceedings of the National Academy of Sciences 101 (11): 3729–3736. doi:10.1073/pnas.0308082100. PMC 374312 (freier Volltext). PMID 14752199.
  • Hesse, H.; Hoefgen, R. (2003). "Molecular aspects of methionine biosynthesis". Trends in Plant Science 8 (6): 259–262. doi:10.1016/S1360-1385(03)00107-9. PMID 12818659.
  • Outteryck, O.; De Sèze, J.; Stojkovic, T.; Cuisset, J. -M.; Dobbelaere, D.; Delalande, S.; Lacour, A.; Cabaret, M.; Lepoutre, A. -C.; Deramecourt, V.; Zéphir, H.; Fowler, B.; Vermersch, P. (2012). "Methionine synthase deficiency: A rare cause of adult-onset leukoencephalopathy". Neurology 79 (4): 386–388. doi:10.1212/WNL.0b013e318260451b. PMID 22786600.