Moleküldynamik

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Moleküldynamik oder Molekulardynamik (MD) bezeichnet Computersimulationen in der molekularen Modellierung, bei denen Wechselwirkungen zwischen Atomen und Molekülen und deren sich daraus ergebende räumliche Bewegungen iterativ berechnet und dargestellt werden. Bei der Modellierung von komplexen Systemen mit einer Vielzahl an beteiligten Atomen werden hauptsächlich Kraftfelder oder semiempirische Methoden verwendet, da der Rechenaufwand zur Anwendung von quantenmechanischen Verfahren (ab-initio-Methoden) hierbei zu groß wäre. Durch die stetig steigende verfügbare Rechenleistung werden allerdings zunehmend quantenchemische Methoden (Ab initio Molecular Dynamic) auch für mittelgroße Systeme möglich.

Die MD-Methode hat ihre Ursprünge in den späten 1950er und frühen 1960er Jahren und spielt eine große Rolle in der Simulation von Flüssigkeiten, wie z. B. Wasser oder wässrigen Lösungen, wo strukturelle und dynamische Eigenschaften in experimentell schwer zugänglichen Bereichen (z. B. von Druck und Temperatur) berechnet werden können.

Der Begriff Moleküldynamik wird manchmal auch als Synonym für die Discrete element method (DEM) gebraucht, weil die Methoden sehr ähnlich sind. Die Partikel in DEM müssen aber keine Moleküle sein. Im Allgemeinen steht der Begriff MD für die Simulation in verschiedensten Bereichen der Chemie (Anorganische, Organische, Physikalische, Theoretische und Biochemie) sowie angrenzender Gebiete (Materialwissenschaften, Biologie, Pharmazie, Medizin).

Physikalische Prinzipien[Bearbeiten]

Mikrokanonisches Ensemble (NVE)[Bearbeiten]

Das mikrokanonisches Ensemble beschreibt ein System, das isoliert ist und keine Partikel (N), Volumen (V) oder Energie (E) mit der Umgebung austauscht.

Für ein System mit N Partikeln, zugehörigen Koordinaten X und Geschwindigkeiten V kann man folgendes Paar gewöhnlicher Differentialgleichungen aufstellen:

\begin{align}
F(X) = - \nabla U(X) = M \dot{V}(t) &\\
                               V(t) & = \dot{X}(t).
\end{align}

Dabei beschreibt

  • F die Kraft
  • M die Masse
  • t die Zeit
  • die potenzielle Energie U(X) die Wechselwirkung der Atome und Moleküle. U(X) wird auch Kraftfeld genannt. Es wird durch zwei Teile definiert:
    • die mathematische Form (d.h. der funktionale Ansatz für die einzelnen Wechselwirkungsarten, meist der klassischen Mechanik entlehnt)
    • die atomspezifischen Parameter. Letztere erhält man aus spektroskopischen Experimenten, Beugungsexperimenten (Röntgenbeugung) und/oder quantenmechanischen Berechnungen (Quantenchemie) sowie in manchen Kraftfeldern auch aus makroskopischen Messwerten (experimentell), die durch die Parametrierung erfüllt werden sollen. Daher kann es für einen Kraftfeldansatz verschiedene Parametersätze geben.

Die Parametrisierung eines Kraftfeldes mit einem großen Anwendungsbereich ist eine große Herausforderung. Bei der Durchführung von MD-Simulationen ist die Wahl des richtigen Kraftfeldes eine wichtige Entscheidung. Generell sind Kraftfelder immer nur auf solche Systeme anwendbar, für die sie parametrisiert sind (z. B. Proteine oder Silikate).

Kanonisches Ensemble (NVT)[Bearbeiten]

Das kanonische Ensemble zeichnet sich im Gegensatz zum mikrokanonischen durch konstante Temperatur aus. Um es zu realisieren, wird zusätzlich ein Thermostat benötigt. Beispielsweise kann das Andersen-Thermostat, das Langevin-Thermostat oder das Nose-Hoover-Thermostat verwendet werden. Teilweise (insbesondere zur Äquilibrierung) wird auch noch das Berendsen- oder Weak-Coupling-Thermostat verwendet. Dieses erzeugt jedoch kein korrektes NVT-Ensemble. Thermostate beruhen auf dem Äquipartitionstheorem.

Isotherm-isobares Ensemble (NPT)[Bearbeiten]

Um das NPT-Ensemble zu realisieren benötigt man neben einem Thermostat zusätzlich ein Barostat. Beispielsweise kann das Andersen-Barostat, das Parrinello-Rahman Barostat oder das Berendsen-Barostat verwendet werden. Barostate beruhen auf dem Clausiusschen Virialtheorem.

Methodik[Bearbeiten]

Das simulierte Volumenelement wird am Anfang mit den zu untersuchenden Teilchen gefüllt. Anschließend werden für jedes Teilchen die Kräfte berechnet, die auf es aufgrund seiner Nachbarn wirken, und die Teilchen entsprechend dieser Kräfte in sehr kleinen Zeitschritten bewegt. Nach einigen Schritten (bei einem guten, passenden Kraftmodell) gelangt das Probevolumen in ein thermisches Gleichgewicht, und die Teilchen fangen an, sich "sinnvoll" zu bewegen. Nun können aus den Kräften und Bewegungen der Teilchen Druck und Temperatur berechnet und schrittweise verändert werden. Die Teilchen können dabei vollständige Moleküle aus einzelnen Atomen sein, die auch Konformationsänderungen durchlaufen können. Größere Moleküle werden oft aus mehrere Atome umfassenden, in sich starren Bauteilen zusammengesetzt (Discrete element method), was den Rechenaufwand minimiert, allerdings sehr gut angepasste Kraftfelder erfordert.

MD-Simulationen finden meist unter periodischen Randbedingungen statt: jedes Teilchen, das das simulierte Volumen auf einer Seite verlässt, taucht auf der gegenüberliegenden wieder auf, alle Wechselwirkungen finden auch über diese Grenzen hinweg direkt statt. Dazu werden identische Kopien des simulierten Volumens nebeneinandergesetzt, so dass der dreidimensionale Raum die Oberfläche eines vierdimensionalen Torus bildet. Da dabei zu jedem Teilchen in den benachbarten Zellen (3x3x3-1=) 26 Kopien entstehen, werden Wechselwirkungen immer nur zu dem einen, nächstliegenden dieser identischen Bildteilchen berechnet ("Minimum Image Convention").

Literatur[Bearbeiten]

  • B.J.Alder, T. E. Wainwright (1959). "Studies in Molecular Dynamics. I. General Method". J. Chem. Phys. 31 (2): 459.
  • M. P. Allen, D. J. Tildesley (1989) Computer simulation of liquids. Oxford University Press. ISBN 0-19-855645-4.
  • D. Frenkel, B. Smit (2002) Understanding Molecular Simulation : from algorithms to applications, Academic Press. ISBN 0-12-267351-4.
  • D. C. Rapaport (1996) The Art of Molecular Dynamics Simulation. ISBN 0-521-44561-2.
  • M. Griebel, A. Caglar, S. Knapek , A. Caglar (2004) Numerische Simulation in der Moleküldynamik: Numerik, Algorithmen, Parallelisierung, Anwendungen, Springer. ISBN 978-3540418566
  • J. M. Haile (2001) Molecular Dynamics Simulation: Elementary Methods. ISBN 0-471-18439-X
  • R. J. Sadus, Molecular Simulation of Fluids: Theory, Algorithms and Object-Orientation, 2002, ISBN 0-444-51082-6
  • Tamar Schlick (2002) Molecular Modeling and Simulation. Springer. ISBN 0-387-95404-X.
  • Andrew Leach (2001) Molecular Modelling: Principles and Applications. (2nd Edition) Prentice Hall. ISBN 978-0582382107.
  • D.J. Evans and G.P. Morriss (2008) Statistical Mechanics of Nonequilibrium Liquids, Second Edition, Cambridge University Press,ISBN 978-0-521-85791-8.
  • William Graham Hoover (1991) Computational Statistical Mechanics, Elsevier, ISBN 0-444-88192-1.
  • J. A. McCammon, S. C. Harvey (1987) Dynamics of Proteins and Nucleic Acids. Cambridge University Press. ISBN 0521307503 (hardback).
  • Oren M. Becker, Alexander D. Mackerell Jr, Benoît Roux, Masakatsu Watanabe (2001) Computational Biochemistry and Biophysics. Marcel Dekker. ISBN 0-8247-0455-X.

Weblinks[Bearbeiten]