Noam Elkies

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Noam Elkies 2005
Noam Elkies 2007

Noam David Elkies (* 25. August 1966 in New York City) ist ein US-amerikanischer Mathematiker, der sich mit Zahlentheorie und Kombinatorik beschäftigt.

Leben[Bearbeiten]

Elkies gewann noch als Vordiplom-Student (Undergraduate) dreimal die Putnam Fellowship, zuerst 1982 mit nur 16 Jahren. Er promovierte 1987 in Harvard bei Barry Mazur und Benedict Gross mit Supersingular primes of a given elliptic curve over a number field. 1990 wurde er Assistenzprofessor in Harvard, wo er 1993 eine volle Professur erhielt (mit 26 Jahren, wodurch er den vorherigen Rekord des Juristen Alan Dershowitz einstellte[1]).

Mathematik[Bearbeiten]

In seiner Dissertation bewies er, dass es zu jeder elliptischen Kurve E über den rationalen Zahlen unendlich viele supersinguläre Primzahlen gibt („supersingulär“ heißt in diesem Fall, dass die Anzahl der Punkte von E modulo p betrachtet, also über dem endlichen Körper \mathbb F_p, kongruent zu 1 mod p ist).

1988 gab er ein Gegenbeispiel für eine Vermutung von Euler über Potenzsummen ganzer Zahlen. Dieser behauptete, dass falls


\sum_{i=1}^{n} a_i^k = b^k

n\geq k sein müsste. Lander und Parkin hatten schon 1966 ein Gegenbeispiel für k=5 gegeben, Elkies gab eines für k=4 (1988 fand Roger Frye mit Computermethoden, die auf Elkies Arbeit beruhen, eine kleinere Lösung).

Etwa gleichzeitig mit Tetsuji Shioda entwickelte er 1990 die Theorie der Mordell-Weil-Gitter[2], die die Mordell-Weil-Gruppe (Gruppe rationaler Punkte einer elliptischen Kurve oder abelschen Varietät über einem globalen Körper) als Gitter behandelt.

Elkies arbeitete auch über numerisch/algorithmische Probleme der Zahlentheorie elliptischer Kurven, wichtig insbesondere für kryptographische Anwendungen. Mit A. O. L. Atkin verbesserte er den Algorithmus von René Schoof zur Bestimmung der Anzahl rationaler Punkte auf elliptischen Kurven.

Elkies ist ein Knobelspiel-Fan und arbeitete auch auf dem Gebiet kombinatorischer Spiele. Weiter ist er bekannt für die Entdeckung vieler neuer interessanter Konfigurationen in John Conways Spiel Life. Auf dem Gebiet der Kombinatorik arbeitete er u.a. über Gitter, Kugelpackungen und Codes.

1994 war er Invited Speaker auf dem Internationalen Mathematikerkongress in Zürich (Linearized algebra). 2004 erhielt er den Levi-L.-Conant-Preis.

Schach[Bearbeiten]

Elkies ist ein aktiver Studienkomponist und Großmeister im Lösen von Schachkompositionen. Er hat mehr als 40 Schachstudien komponiert. 1996 wurde er in Tel Aviv Weltmeister im Lösen von Schachaufgaben und Studien.

Den Turnierschach beendete er mit Anfang zwanzig, als er etwa 2260 ELO-Punkte erhalten hatte, etwas über den 2200 nötigen Punkten für einen US-Meister.

Noam Elkies
Internet Mailing Liste, 2004
Solid white.svg a b c d e f g h Solid white.svg
8 a8 b8 c8 d8 e8 f8 g8 h8 8
7 a7 b7 c7 d7 e7 f7 g7 h7 7
6 a6 b6 c6 d6 e6 f6 g6 h6 6
5 a5 b5 c5 d5 e5 f5 g5 h5 5
4 a4 b4 c4 d4 e4 f4 g4 h4 4
3 a3 b3 c3 d3 e3 f3 g3 h3 3
2 a2 b2 c2 d2 e2 f2 g2 h2 2
1 a1 b1 c1 d1 e1 f1 g1 h1 1
a b c d e f g h
Wer gewinnt?



Lösung:

Um die Frage unter dem Diagramm beantworten zu können, ist mit einer Retroanalyse die Entstehungsgeschichte der gezeigten Stellung aufzuklären.

Weiß steht im Schach und anscheinend ist es Schachmatt. In diesem Fall hätte Schwarz gewonnen. Da der schwarze Bauer Schach bietet und der weiße König nicht flüchten kann, kann diesem Schach nur durch Schlagen des Bauers begegnet werden. Dieser Bauer jedoch könnte lediglich en passant durch den weißen Bauern f5 geschlagen werden. In diesem Fall wäre Schwarz matt und Weiß hätte gewonnen.

Notwendige Voraussetzung für das en passant-Schlagen ist der Doppelschritt des zu schlagenden Bauers im unmittelbar vorausgehenden Zug. Wegen des Schachgebots muss der g-Bauer zuletzt gezogen haben. Der Partieausgang hängt davon ab, ob der Bauer von g7 oder von g6 nach g5 gezogen hat.

Diese Frage kann eindeutig entschieden werden, indem der letzte Zug von Weiß ermittelt wird.

Musik[Bearbeiten]

Elkies komponiert Musik und spielt auf dem Piano, seit er drei Jahre alt ist. Er interessiert sich dabei für Anwendungen der Mathematik in der Musik. Einige seiner Stücke wurden auf Radiosendern in Israel und den Vereinigten Staaten ausgestrahlt.

Weblinks[Bearbeiten]

Einzelnachweise[Bearbeiten]

  1. Ravi Vakil, "The Youngest Tenured Professor in Harvard History," Math Horizons, September 1998, (PDF; 501 kB) Abgerufen am 4. Juli 2013.
  2. Elkies On Mordell-Weil-Lattices, Arbeitstagung Bonn 1990