Noetherscher Normalisierungssatz

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Der noethersche Normalisierungssatz (oder auch noethersches Normalisierungslemma) (nach Emmy Noether) ist eine Strukturaussage aus dem mathematischen Teilgebiet der kommutativen Algebra. In geometrischer Sprache besagt er, dass es von einem geometrischen Objekt stets eine Abbildung in einen affinen Raum gibt, deren Fasern endlich sind.

Dieser Artikel beschäftigt sich mit kommutativer Algebra. Insbesondere sind alle betrachteten Ringe kommutativ und haben ein Einselement. Für weitere Details siehe Kommutative Algebra.

Formulierung[Bearbeiten]

Es sei k ein Körper und A eine k-Algebra endlichen Typs. Dann gibt es algebraisch unabhängige Elemente x_1,\ldots,x_n\in A, so dass A eine endliche k[x_1,\ldots,x_n]-Algebra ist.

Dabei bedeutet "algebraisch unabhängig", dass der Homomorphismus

k[X_1,\ldots,X_n]\to A,\quad X_i\mapsto x_i

aus dem Polynomring k[X_1,\ldots,X_n] nach A injektiv ist.

Siehe auch[Bearbeiten]