Plattentektonik

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Die Lithosphärenplatten der Erde
Die Kinematik der Platten. Die dargestellten Richtungen und Geschwindigkeiten der Drift wurden aus GPS-Rohdaten ermittelt.

Als Plattentektonik bezeichnet man die Gliederung der äußeren Erdhülle, der Lithosphäre (Erdkruste und oberster Erdmantel), in Lithosphärenplatten (umgangssprachlich Kontinentalplatten genannt), die dem tieferen Erdmantel aufliegen und darauf umherwandern (Kontinentaldrift).

Ursprünglich war Plattentektonik die Bezeichnung für das entsprechende Denkmodell in den Geowissenschaften. Die Theorie der großräumigen tektonischen Vorgänge in der äußeren Erdhülle ist mittlerweile vielfach belegt worden und gehört heute zu den grundlegenden Theorien über die endogene Dynamik der Erde.

Zu den mit der Plattentektonik verbundenen Phänomenen zählen die Entstehung von Faltengebirgen (Orogenese) durch den Druck zusammenstoßender Kontinente sowie die häufigsten Formen von Vulkanismus und Erdbeben.

Reliefkarte der Erdoberfläche mit den Lithosphärenplatten und Angaben zur Geodynamik

Überblick

Die Lithosphärenplatten

Grundlegend für die Plattentektonik ist die fragmentierte Struktur der Lithosphäre. Sie ist in sieben große Lithosphärenplatten gegliedert, die auch als tektonische Platten oder (vor allem von Nicht-Geologen) als Kontinentalplatten bezeichnet werden:

Daneben gibt es noch eine Reihe kleinerer Platten wie z. B. die Nazca-Platte, die Indische Platte, die Philippinische Platte, die Arabische Platte, die Karibische Platte, die Cocosplatte, die Scotia-Platte sowie weitere Mikroplatten, über deren Abgrenzung jedoch teilweise noch wenig bekannt ist oder deren Existenz nur vermutet wird.

Siehe auch: ozeanische Kruste

Die Bewegungen der Platten

Die Plattengrenzen werden an der Erdoberfläche meist entweder durch mittelozeanische Rücken oder Tiefseerinnen repräsentiert. An den Rücken driften die benachbarten Platten auseinander (divergierende Plattengrenze), wodurch basaltisches Magma aus dem oberen Erdmantel emporsteigt und neue ozeanische Lithosphäre gebildet wird. Dieser Prozess wird auch als Ozeanbodenspreizung oder Seafloor Spreading bezeichnet. Er geht mit intensivem, meist untermeerischem Vulkanismus einher.

Dort, wo im Gegenzug die ozeanische Kruste tief in den Erdmantel absinkt, entstehen Tiefseerinnen. An dieser konvergierenden Plattengrenze taucht eine der beiden ozeanischen Lithosphärenplatten unter die andere Platte ab (Subduktion). Durch Entwässerungsprozesse in der abtauchenden Platte entsteht auch hier ein ausgeprägter Vulkanismus.

Die eigentlichen Kontinentalblöcke oder Kontinentalschollen aus vorwiegend granitischem Material werden – zusammen mit den umgebenden Ozeanböden sowie dem jeweils darunter befindlichen lithosphärischen Mantel – wie auf einem langsamen Fließband von den Spreizungszonen weg und zu den Subduktionszonen hin geschoben. Nur eine Kollision zweier Kontinentalblöcke kann diese Bewegung aufhalten. Da die kontinentale Kruste spezifisch leichter als die ozeanische Kruste ist, taucht sie an der Subduktionszone nicht mit zusammen der ozeanischen Platte ab, sondern wölbt sich stattdessen zu einem Gebirgszug auf (Orogenese). Hierbei kommt es zu komplexen Deformationsvorgängen. Eine solche Kontinent-Kontinent-Kollision findet zum Beispiel zwischen der Eurasischen und der Indischen Platte statt und führte zur Bildung des Himalaya.

Darüber hinaus können zwei Platten auch einfach horizontal aneinander vorbeigleiten (konservative Plattengrenze). In diesem Fall wird die Plattengrenze als Transformstörung (Transformverwerfung) bezeichnet.

Als Hauptursache für die Plattenbewegungen werden Konvektionsströme im Erdmantel angenommen.

Geschichte der Theorie der Plattentektonik

Kontinentaldrift

Hauptartikel: Kontinentaldrift
Die paläobiogeographischen Verbreitungsgebiete von Cynognathus, Mesosaurus, Glossopteris und Lystrosaurus (hier stark schematisch dargestellt und nicht mit den tatsächlichen, anhand der Fossilfundstellen rekonstruierten Verbreitungsgebieten identisch) sind einer der Belege für die Existenz von Gondwana und damit auch für die Existenz der Plattentektonik.

Nachdem einige Forscher bereits ähnliche Gedanken vertraten, war es vor allem Alfred Wegener, der in seinem 1915 veröffentlichten Buch Die Entstehung der Kontinente und Ozeane aus der genauen Passung der Küstenlinien von Südamerika und Afrika folgerte, dass diese Bruchstücke eines ehemals größeren Kontinents gewesen sein könnten, der in der erdgeschichtlichen Vergangenheit auseinandergebrochen war. Die Passung ist noch genauer, wenn man nicht die Küstenlinien, sondern die Schelfränder, also die unter Wasser liegenden Teile der Kontinente betrachtet. Daneben sammelte Wegener viele weitere Argumente für seine Theorie. Jedoch konnte er keine überzeugenden Ursachen für die Kontinentaldrift benennen. Eine vielversprechende Hypothese kam von Arthur Holmes (1928), der vorschlug, dass Wärmeströme im Erdinneren genügend Kraft erzeugen könnten, um die Erdplatten zu bewegen. Zu diesem Zeitpunkt konnte sich seine Hypothese jedoch nicht durchsetzen.

Ab 1960: Ozeanböden, Subduktion, Erdmessung

Der Paradigmenwechsel zum Mobilismus setzte deshalb erst etwa um 1960 vor allem durch die Arbeiten von Harry Hammond Hess, Robert S. Dietz, Bruce C. Heezen, Marie Tharp, John Tuzo Wilson und Samuel Warren Carey ein, als man grundlegend neue Erkenntnisse über die Geologie der Ozeanböden erlangte.

Muster der mit wechselnder Polarität magnetisierten ozeanischen Kruste. a) vor 5 Mio. Jahren, b) vor 2–3 Mio. Jahren, c) heute
  • Man erkannte zum Beispiel, dass die Mittelozeanischen Rücken vulkanisch aktiv sind und dass dort an langen Bruchspalten große Mengen basaltischer Lava austreten, meist in Form von Kissenlava.
  • Bei paläomagnetischen Messungen dieser Basalte entdeckte man, dass die wiederholte Umpolung des Erdmagnetfelds im Laufe der Erdgeschichte ein spiegelsymmetrisches „Streifenmuster“ auf beiden Seiten des Mittelatlantischen Rückens erzeugt hatte.[1]
  • Außerdem erkannte man, dass die Sedimentgesteine, die die Tiefseeböden bedecken, in größerer Entfernung von den Mittelozeanischen Rücken auch immer mächtiger und älter werden.

Die einleuchtendste Erklärung für diese Phänomene war, dass der ständige Austritt basaltischer Magmen an den langgezogenen Mittelozeanischen Bruchzonen Teil eines Prozesses ist, durch welchen der Ozeanboden in entgegengesetzte Richtungen auseinandergedrückt wird, so dass er sich im Laufe der Zeit immer weiter ausdehnt (Seafloor Spreading).

Da es keine Anzeichen gibt, dass sich der Radius der Erde im Laufe ihres Bestehens kontinuierlich vergrößert, wie es z. B. in Careys Expansionstheorie gefordert wurde, liegt der Gedanken nahe, dass die in der ozeanische Kruste neu gebildete Erdoberfläche an anderer Stelle wieder von der Erdoberfläche verschwinden muss. Dieser Ansatz wird gestützt durch die Tatsache, dass man in den heutigen Ozeanen (abgesehen von tektonischen Sonderpositionen wie im Mittelmeer) keine Lithosphäre findet, die älter als 200 Millionen Jahre alt ist. Die Hälfte aller Ozeane ist nicht einmal älter als 65 Millionen Jahre. Dadurch wurde die alte Vorstellung widerlegt, nach der die Ozeane uralte Vertiefungen seien, die sich, wie die Kontinente, schon mit der Formung der ersten festen Kruste um die glutflüssige Urerde gebildet hätten. Stattdessen bestehen die Ozeanböden, verglichen mit den Kontinenten, aus geologisch außerordentlich jungen Gesteinen.

Als Ort dieses Verschwindens von ozeanischer Lithosphäre wurden in den 1970er Jahren die Tiefseerinnen erkannt, die beispielsweise den Pazifischen Ozean umgeben. Wegen der damit verbundenen starken seismischen und vulkanischen Aktivität wird diese Zone auch als Pazifischer Feuerring bezeichnet.

  • Geophysikalische Messungen offenbarten dort schräg geneigte seismische Reflexionsflächen (Benioff-Zone), an denen ozeanische Kruste unter kontinentale (oder andere ozeanische) Kruste geschoben wird und absinkt. Typisch für diese Zonen sind die tiefen Erdbeben, deren Hypozentren in Tiefen von 320 bis 720 km liegen können. Dieser Befund wird mit den Phasenumwandlungen der Minerale in der subduzierten Platte erklärt.
  • Als Substrat, auf dem die Lithosphäre seitlich driften kann, gilt die rund 100 km mächtige Asthenosphäre. Sie wird auch „Low-Velocity Zone“ (dt. „Zone langsamer Geschwindigkeit“) genannt, da sich die seismischen P- und S-Wellen nur langsam durch sie hinfortbewegen. Diese zähflüssige Zone erklärte man sich durch teilweise aufgeschmolzene und somit in geologischen Zeiträumen fließfähige Gesteinspakete unterhalb der relativ starren, 70 bis 120 km mächtigen Lithosphäre.

Die neuen Methoden der Satellitengeodäsie und des VLBI, die sich in den 1990ern der Zentimeter-Genauigkeit näherten, liefern einen direkten Nachweis der Kontinentaldrift. Die Geschwindigkeit der Ozeanboden-Spreizung beträgt einige Zentimeter pro Jahr, variiert aber zwischen den einzelnen Ozeanen. Die geodätisch ermittelten Driftraten zwischen den großen Platten liegen zwischen 2 und 20 cm pro Jahr und stimmen mit den geophysikalischen NUVEL-Modellen weitgehend überein.

Neben Wegeners Theorie der Kontinentaldrift enthält die Plattentektonik auch Elemente der Unterströmungstheorie von Otto Ampferer (siehe auch Geschichte der Geologie, Permanenztheorie).

Gebirgsbildung und Vulkanismus im Licht der Plattentektonik

Schematische Darstellung der Prozesse entlang der Plattengrenzen und wesentlicher damit einhergehender geologischer Erscheinungen

Im Gegensatz zu der klassischen Geosynklinal-Theorie geht man heute davon aus, dass die meisten gebirgsbildenden und vulkanischen Prozesse an die Plattenränder gebunden sind. Hier entstehen als Begleiterscheinungen der sich bewegenden Platten für den Menschen bedeutsame Naturphänomene wie Vulkanausbrüche, Erdbeben und Tsunamis.

Es gibt eindimensionale Plattengrenzen, an denen zwei tektonische Platten zusammentreffen und Tripelpunkte, an denen drei tektonische Platten zusammentreffen. Nicht an Plattengrenzen gebunden sind Hotspots, die durch thermische Anomalien im unteren Erdmantel verursacht werden.

Konstruktive (Divergierende) Plattengrenzen

Diese Brücke auf Island überspannt eine Bruchzone in jenem Gebiet, wo die Nordamerikanische und die Eurasische Platte sich voneinander entfernen.

Das Auseinanderdriften zweier Platten nennt man Divergenz. Hier entsteht neue Lithosphäre.

Mittelozeanische Rücken

Die Mittelozeanischen Rücken (MOR) werden (als sogenannte Rücken und Schwellen) mit einer Gesamtlänge von rund 70.000 km als die größten zusammenhängenden Gebirgssysteme des Planeten Erde angesehen.

Die Flanken der MOR sind sehr flach. Die Kammregion weist über weite Strecken Einsenkungen auf – den Zentralen Graben. Dort erfolgt die eigentliche Neubildung von Erdkruste bzw. Lithosphäre, indem große Mengen an heißen, größtenteils basaltischen Magmen aufsteigen und kristallisieren. Nur ein kleiner Bruchteil erreicht hierbei als Lava den Meeresboden. Das frisch kristallisierte Gestein hat im Vergleich zu älterer ozeanischer Lithosphäre eine geringere Dichte. Dies ist der Grund dafür, dass die MOR sich über den benachbarten Ozeanboden erheben. Mit zunehmendem Alter der basaltischen Gesteine steigt deren Dichte, weshalb die MOR mit zunehmender Entfernung von der Kammregion immer flacher werden. Quer zum Zentralgraben verlaufen Bruchlinien, an denen die einzelnen Abschnitte des MOR gegeneinander versetzt sind. Daher haben die MOR keine durchgehende Kammlinie.

Ein eigentümliches vulkanisches Phänomen, das an die Mittelozeanischen Rücken gebunden ist, sind die Schwarzen und Weißen Raucherhydrothermale Schlote, an denen überhitztes, mineralgesättigtes Wasser austritt. Dabei kommt es an den Schwarzen Rauchern zur Ablagerung von Erzen, die dann sogenannte sedimentär-exhalative Lagerstätten bilden.

Intrakontinentale Gräben (Riftzonen)

Auch Riftzonen wie der Ostafrikanische Graben, die als die erste Phase einer Ozeanbildung aufgefasst werden können, sind mit vulkanischer Aktivität verbunden. Allerdings handelt es sich nicht um konstruktive Plattengrenzen im eigentlichen Sinn. Die Plattendivergenz wird hier zu einem Großteil durch das Einsinken und Verkippen kontinentaler Krustenblöcke ausgeglichen. Charakteristisch ist die Aufwölbung der umgebenden kontinentalen Kruste, die aus der Aufheizung und damit einhergehenden Dichteabnahme der ausgedünnten Lithosphäre resultiert und sich in Form herausgehobener Grundgebirgs-Massive äußert, welche die Riftflankengebirge (Riftschultern) des Grabensystems bilden.

Grabensysteme wie der Ostafrikanische Graben entstehen durch die Tätigkeit sogenannter Manteldiapire. Diese heizen die Lithosphäre auf, dünnen sie aus und wölben sie domartig auf. Die entstehenden Spannungen führen schließlich dazu, dass die Kruste nachgibt und sich dreistrahlige Grabensysteme, ausgehend von den domartigen Aufwölbungen, radial ausbreiten, wobei aufeinandergerichtete Riftstrahlen zusammenwachsen und ein langgestrecktes Grabensystem bilden. Die übrigen Äste des Riftsystems verkümmern. An den tiefreichenden Brüchen in der Kruste, die bei diesen Prozessen entstehen, steigt Magma auf, was für den typischen alkalischen Vulkanismus kontinentaler Riftzonen sorgt.

Bei zunehmender Ausweitung der Bruchzonen bilden sich schmale, langgezogene Meeresbecken, die, wie das Rote Meer, bereits mit ozeanischer Kruste unterlegt sind und sich mit der Zeit zu ausgedehnten Ozeanbecken ausweiten können.

Destruktive (Konvergierende) Plattengrenzen

Die gegeneinander gerichtete Bewegung zweier Platten wird Konvergenz genannt. Dabei findet entweder eine Überschiebung statt, bei der entlang einer Subduktionszone die dichtere unter die weniger dichte Platte geschoben wird (Subduktion), oder eine Kollision, bei der eine oder beide Platten in den Randbereichen gefaltet werden.

Kordilleren- oder Andentyp

Subduktion von dichterer ozeanischer Kruste unter einen Block aus kontinentaler Kruste

Der klassische Kordillerentyp der Kettengebirge findet sich über jenen Subduktionszonen, bei denen ozeanische Lithosphäre direkt unter kontinentale Lithosphäre subduziert wird, wie an der Westküste Südamerikas.

Durch das Abtauchen der ozeanischen Platte unter den Kontinentalblock befindet sich unmittelbar an der Subduktionsfront eine Tiefseerinne. Auf dem Kontinent entsteht durch den horizontalen Druck, den die subduzierte Platte ausübt, ein Faltengebirge, jedoch ohne ausgedehnte Deckenüberschiebungen. Die erhöhten Drücke und Temperaturen der Gebirgsbildung können zu Regional-Metamorphosen und Aufschmelzungen (Anatexis) in den betroffenen kontinentalen Krustenbereichen führen.

Innerhalb des Faltengebirges bildet sich ein vulkanischer Bogen aus. Dies geht darauf zurück, dass die subduzierte Platte im Gestein gebundene Fluide – insbesondere Wasser – mit in die Tiefe transportiert. Unter den dort vorherrschenden Druck- und Temperaturbedingungen kommt es zu Phasentransformationen im Gestein, wobei Wasser aus der abtauchenden Platte in den darüberliegenden Mantel abgegeben wird. Dadurch wird die Schmelztemperatur des Mantelgesteins verringert und es kommt zu einer Teilaufschmelzung. Die zunächst basaltische Schmelze steigt durch die darüberliegende Lithosphäre auf und differenziert sich dabei zum Teil gravitativ oder vermengt sich mit Krustenmaterial. Die resultierenden zähflüssigen andesitischen bis rhyolitischen Magmen können bis an die Oberfläche gelangen und rufen dort zum Teil hochexplosive vulkanische Eruptionen hervor. Die Anden als Typusregion der Anden-Typ-Subduktion sind entsprechend auch beispielhaft für den damit verbundenen Vulkanismus, der durch zahlreiche aktive Vulkane, wie z. B. den Cerro Hudson oder den Corcovado, aber auch durch weit verbreitete fossile Lavagesteine und Ignimbrite repräsentiert wird.

Bei der Kollision von ozeanischer mit kontinentaler Kruste wird der Ozeanboden nicht immer vollständig subduziert. Kleine Reste von Meeresbodensedimenten und basaltischem Material (Ophiolithe) werden zuweilen bei der Subduktion von ihrer Unterlage „abgeschabt“ (abgeschert) und versinken nicht im oberen Mantel. Stattdessen werden sie, keilförmig auf den Kontinentalrand aufgeschoben (obduziert) und in das Kettengebirge und damit die kontinentale Kruste integriert. Da sie der Subduktionsfront am nächsten sind, erfahren sie den höchsten Druck und werden zusammen mit den übrigen Gesteinen des Kontinentalrandes gefaltet und einer Hochdruck-Niedrig-Temperatur-Metamorphose unterzogen.

Vulkanische Inselbögen (Marianen-Typ)

Am Westrand des Pazifiks sowie in der Karibik wird ozeanische Kruste unter andere ozeanische Kruste subduziert. Auch dort bilden sich Tiefseerinnen und vulkanische Bögen. Letztere heißen Inselbögen, weil nur die höchsten Teile der Vulkanbögen oberhalb des Meeresspiegels liegen. Die Bogenform ist auf das geometrische Verhalten einer Kugeloberfläche, wie der Erdkruste, beim Abknicken und Untertauchen eines Plattenteils zurückzuführen. Die konvexe Seite des Bogens weist dabei stets in Richtung der subduzierten Platte. Beispiele sind die Marianen, die Alëuten, die Kurilen oder die japanischen Inseln sowie die Kleinen und Großen Antillen.

Typisch für Subduktionszonen vom Marianen-Typ sind sogenannte Backarc-Becken (von engl. back für ‚hinter‘ und arc für ‚Bogen‘). Der Name verweist darauf, dass sich diese Dehnungszonen in der Kruste hinter dem Inselbogen (von der subduzierten Platte aus gesehen) befinden.

Kollisionstyp

Die Drift der indischen Landmasse nach Norden

Wenn die ozeanische Kruste zwischen zwei Kontinentalblöcken vollständig subduziert worden ist, kommt es zum Kollisionstyp der Gebirgsbildung, wie zum Beispiel im Fall des Himalaya-Gebirges durch den Zusammenstoß des indischen Subkontinents mit der eurasischen Landmasse. Bei einem solchen Zusammenstoß wird die Lithosphäre durch die Bildung ausgedehnter tektonischer Decken enorm verdickt. Nach einer mehrphasigen Gebirgsbildung, d.h., zeitlich versetzten Zusammenstößen mehrerer Kleinkontinente oder vulkanischer Inselbögen (sogenannte Terrane) mit einem größeren Kontinentalblock und zwischenzeitlichen Subduktionsphasen, zeigen die erhaltenen Ophiolith-Zonen die Grenze zwischen den einzelnen Kleinkontinentalblöcken an (siehe auch Geosutur). Sowohl an der der West- als auch an der Ostküste Nordamerikas finden sich Anzeichen, dass der nordamerikanische Kontinent durch solche mehrphasigen Gebirgsbildungen im Laufe seiner geologischen Geschichte immer mehr Kruste ansetzte.

Das Bild kann bei schrägem Aufeinandertreffen der Blöcke, wie bei der Apenninhalbinsel im Mittelmeer, noch komplizierter werden. Es gibt Indizien, dass ozeanische Mittelmeerkruste zeitweilig sowohl unter die Afrikanische als auch unter die Eurasische Platte subduziert wurde, während die Iberische Halbinsel, der Sardo-korsische Block und die Apenninhalbinsel zwischen den großen Kontinentalblöcken gegen den Uhrzeigersinn rotierten.

Konservative Plattengrenzen (Transform-Störungen)

San-Andreas-Verwerfung

An konservativen Plattengrenzen oder Transform-Störungen wird Lithosphäre weder neu gebildet noch subduziert, denn die Lithosphärenplatten „gleiten“ hier aneinander vorbei. An und nahe der Erdoberfläche, wo die Gesteine spröde sind, ist eine solche Plattengrenze als Blattverschiebung ausgebildet. Mit zunehmender Tiefe ist das Gestein infolge der hohen Temperaturen nicht spröde sondern hochviskos, d.h., es verhält sich wie eine extrem zähe Masse. Daher geht die Blattverschiebung in größerer Tiefe in eine sogenannte duktile Scherzone über.

Transform-Störungen in kontinentaler Kruste können eine beachtliche Länge erreichen und gehören, wie alle Plattengrenzen, zu den Erdbebenschwerpunkten. Bekannte Beispiele sind die San-Andreas-Verwerfung in Kalifornien, oder die Nordanatolische Verwerfung in der Türkei.

An den Mittelozeanischen Rücken (MOR) gibt es nicht nur vulkanisch aktive Längsgräben, sondern auch querlaufende Störungen, bei denen es sich ebenfalls um Blattverschiebungen bzw. Scherzonen handelt. Diese zerschneiden die Flanken der MOR in unregelmäßigen Abständen und teilen den Rücken in einzelne, gegeneinander versetzte Abschnitte. Allerdings sind nur die Bereiche der Störungen, die zwischen den Zentralgräben zweier benachbarter MOR-Abschnitte verlaufen, tatsächlich auch konservative Plattengrenzen und damit Transformstörungen im eigentlichen Sinn. Auch die Transformstörungen der MOR sind seismisch aktiv.

Hotspots

Der Hotspot-Vulkanismus stellt eine Besonderheit dar, da er nicht an Plattengrenzen gebunden ist. Sowohl z. B. auf Island wie auf Hawaii werden aus stationären Quellen im unteren Mantel, den sogenannten Diapiren oder Plumes, Material gefördert, aus dem im oberen Erdmantel basaltische Laven mit spezifischer chemischer Zusammensetzung herausschmelzen. Während Island jedoch genau auf dem Mittelatlantischen Rücken liegt und vielleicht aktiv an der Spreizung des Nordatlantiks beteiligt ist, befindet sich Hawaii mitten in der Pazifischen Platte. Die langen Inselketten des Südpazifiks erklären sich dadurch, dass die ozeanische Lithosphäre kontinuierlich über einen stationären Hot Spot geglitten ist, dessen Vulkanschlote in regelmäßigen Abständen den Ozeanboden durchschlagen haben.

Zumindest für die Inseln von Hawaii lassen neue Erkenntnisse vermuten, dass es sich dort nicht um einen gänzlich stationären, sondern um einen beweglichen Hot Spot handelt. Wissenschaftler untersuchten die Ausrichtung des magnetischen Feldes im ehemals geschmolzenen Gestein, welches beim Erstarren das zu dem Zeitpunkt vorherrschenden Magnetfeld quasi einfriert.[2] Die Ergebnisse decken sich nicht mit der bisherigen Annahme, sondern legen die Vermutung nahe, dass sich die Wärmequelle unter der tektonischen Platte bewegt. Die Eigenbewegung des Diapirs verläuft jedoch wesentlich langsamer als die Bewegung der Pazifischen Platte.

Ursachen der Plattentektonik und ungelöste Probleme

Wenn die Realität der Kontinentaldrift unter Geowissenschaftlern auch kaum noch bezweifelt wird, so besteht über die Kräfte im Erdinnern, die die Bewegungen der Platten auslösen und vorantreiben, noch fast so viel Unklarheit wie zu Zeiten Wegeners (siehe hierzu auch Mantelkonvektion). Die beiden hier angeführten Theorien galten lange Zeit als gegensätzlich und miteinander unvereinbar. Nach heutiger Sicht werden sie immer mehr als einander ergänzend angesehen.

Konvektionsströmungen

Das Prinzip der Plattentektonik (nicht maßstäblich)

Die heute am meisten vertretene Meinung geht von langsamen Konvektionsströmen aus, die sich durch den Wärmeübergang zwischen dem heißen Erdkern und dem Erdmantel ergeben. Der Erdmantel wird hierbei von unten aufgeheizt. Die Energie für die Aufheizung des Mantelmaterials könnte nach einer Modellvorstellung noch von der Akkretionsenergie herrühren, die bei der Entstehung der Erde frei wurde. Zum Teil tragen auch radioaktive Zerfallsprozesse zur Aufheizung bei. Die Reibungsenergie der Gezeitenwirkung des Mondes auf den Erdkörper kann wohl vernachlässigt werden. Allerdings bilden Konvektionsströme unter Laborbedingungen, zum Beispiel in erhitzten zähen Flüssigkeiten, sehr hoch strukturierte und symmetrische Formen aus, die z. B. eine Wabenstruktur haben. Dies lässt sich kaum mit der tatsächlich beobachteten Gestalt der geotektonischen Platten und ihren Bewegungen vereinbaren.

Eine andere Theorie geht von nur zwei sich gegenüber liegenden Konvektionszentren aus. Eine heute dominante Zelle läge unter Afrika, was das dortige Vorherrschen von Dehnungsbrüchen und das Fehlen einer Subduktionszone am Rand der Afrikanischen Platte erklären würde. Die andere Konvektionszelle läge auf der Gegenseite des Globus – unter der Pazifischen Platte, die ständig an Größe verliert. Der Pazifik, der interessanterweise keinerlei kontinentale Kruste beinhaltet, wäre somit der Überrest eines urzeitlichen Superozeans Panthalassa, der einst Pangaea umschlossen habe. Erst wenn sich im Gebiet des heutigen Pazifik alle Kontinente wieder zu einem neuen Superkontinent vereinigt hätten, würde sich die Bewegung umkehren (Wilson-Zyklus). Die neue Pangaea würde wieder auseinanderbrechen, um den neuen Superozean, der sich aus Atlantik, Indischem und Arktischem Ozean gebildet hätte, ein weiteres Mal zu schließen.

Aktive Lithosphärenplatten

Andere Autoren sehen die Platten nicht nur passiv auf dem Mantel liegen. So nimmt die Mächtigkeit und die Dichte einer ozeanischen Lithosphärenplatte stetig zu, während sie sich vom Mittelozeanischen Rücken entfernt und abkühlt, wodurch sie bereits ein wenig in den Mantel einsinkt und dadurch leichter von der Oberplatte überschoben werden kann. Nach dem Abtauchen unter die Oberplatte wird das subduzierte Gestein schließlich unter den Druck- und Temperaturbedingungen bei zunehmender Tiefe in Gestein höherer Dichte umgewandelt. So bildet sich beispielsweise aus dem Basalt der ozeanischen Kruste Eklogit, wodurch die Dichte der Subduzierten Platte sogar die Dichte des darunter liegenden Teils des Erdmantels übersteigen kann. Deshalb wird die bei einer Kollision in den Mantel sinkenden Platte durch ihr eigenes Gewicht tiefer gezogen, wobei Plattenmaterial im Extremfall bis nahe an den unteren Rand des Erdmantels sinken kann.[3] Die auf die Lithosphärenplatte ausgeübte Kraft wird Plattenzug genannt (engl. slab pull, von pull ‚ziehen‘; slab ‚Platte‘).[4] Eine etwa um den Faktor 10 kleinere Kraft entsteht darüber hinaus an der dem Mittelozeanischen Rücken zugewandten Seite einer Lithosphärenplatte, da die dort aufgewölbte Kruste eine Hangabtriebskraft erfährt, den Rückendruck (engl. ridge push, von ridge ‚Rücken‘ und push ‚drücken‘).[4] Auch auf die gegenüberliegende, nicht in den Mantel sinkende Platte wirkt in einer Subduktionszone eine Kraft, eine Zugspannung. Mit welcher Geschwindigkeit sich eine ozeanische Lithosphärenplatte allerdings tatsächlich bewegt, hängt auch von der Größe der Gegenkräfte ab.[5]

Plattentektonik auf anderen Himmelskörpern

Nach dem bisherigen Stand der Forschung scheint der Mechanismus der Plattentektonik nur auf der Erde wirksam zu sein. Das ist für den kleinen Planeten Merkur und für die großen Monde der Gasplaneten und den Erdmond noch plausibel. Die Lithosphäre dieser relativ zur Erde viel kleineren Himmelskörper ist im Verhältnis zu mächtig, um in Form von Platten mobil sein zu können. Allerdings zeigt die Kruste des Jupitermondes Ganymed Ansätze einer zum Erliegen gekommenen Plattentektonik. Bei der fast erdgroßen Venus ist wiederum schwer zu verstehen, warum eine Plattentektonik trotz starkem Vulkanismus nicht in Gang gekommen sein dürfte. Eine erhebliche Rolle könnte dabei das nur auf der Erde vorkommende freie Wasser spielen. Offensichtlich dient es hier bis hinab auf die Kristallgitterebene als reibungsminderndes „Schmiermittel“. An den Subduktionszonen der Erde werden im Porenraum der Sedimente des Ozeanbodens Milliarden Tonnen Wasser mit in die Tiefe gezogen, das den überliegenden Erdmantel partiell aufschmilzt. Auf der Venus sind flüssiges Wasser und folglich Meere zumindest heute nicht mehr vorhanden.

Der Mars dagegen scheint eine Zwischenstellung zu besitzen. Wasser bzw. Eis ist vorhanden und man meint, Ansätze einer Plattentektonik erkennen zu können. Die aufgereihten gigantischen Schildvulkane und Grabensysteme, die den halben Planeten umspannen, erinnern in gewisser Weise an das Rifting auf der Erde. Dem steht wiederum das Fehlen von eindeutigen Verschluckungszonen gegenüber. Wahrscheinlich reichte die innere Hitzeentwicklung und daraus folgende Konvektion auf diesem relativ kleinen Planeten nicht ganz aus, um den Mechanismus wirklich in Gang zu setzen, oder der Vorgang kam bereits in der Frühgeschichte des Planeten wieder zum Stillstand.

Ob eine Art Plattentektonik auf anders aufgebauten Himmelskörpern stattfindet, ist nicht bekannt, aber vorstellbar. Als Kandidaten für konvektionsgetriebene weiträumige horizontale Krustenverschiebungen können die Monde Europa und Enceladus gelten. Die knapp erdmondgroße Europa weist einen Eispanzer von etwa 100 km Dicke über einem felsigen Mondkörper auf, der in den unteren Bereichen teilweise oder vollständig aufgeschmolzen sein könnte, so dass der Eispanzer möglicherweise wie Packeis auf einem Ozean schwimmt. Der nur etwa 500 km kleine Enceladus wird wahrscheinlich durch Gezeitenkräfte aufgeheizt. Flüssiges Wasser oder durch hohen Druck duktiles Eis könnte bei beiden Himmelskörpern an tiefreichenden Störungen aufsteigen, und das spröde Eis der Kruste zur Seite drücken, was wiederum folgen ließe, dass andernorts Kruste verschluckt werden müsste. Die Oberfläche dieser Monde ist jedenfalls geologisch aktiv oder zumindest aktiv gewesen, und zeigt Anzeichen dafür, dass dort Krustenerneuerung stattfand. Der Vulkanismus auf Io dagegen scheint derartig stark zu sein, dass stabile Krustenbereiche in der Art der Platten erst gar nicht entstanden sind.

Siehe auch

Literatur

  • Wolfgang Frisch, Martin Meschede: Plattentektonik. 2. Auflage. Primus-Verlag, Darmstadt 2007, ISBN 3-89678-525-7.
  • Ozeane und Kontinente, ihre Herkunft, ihre Geschichte und Struktur. Spektrum-der-Wissenschaft-Verlagsgesellschaft, Heidelberg 1985, ISBN 3-922508-24-3.
  • Hans Pichler: Vulkanismus. Naturgewalt, Klimafaktor und kosmische Formkraft. Spektrum-der-Wissenschaft-Verlagsgesellschaft, Heidelberg 1985, ISBN 3-922508-32-4.
  • H. Miller: Abriß der Plattentektonik. Enke, Stuttgart 1992, ISBN 3-432-99731-0.
  • Alfred Wegener: Die Entstehung der Kontinente. In: Geologische Rundschau – Zeitschrift für allgemeine Geologie. 3, Nr. 4, 1912, ISSN 0016-7835, S. 276–292 (doi:10.1007/BF02202896).
  • Rainer Kind, Xiaohui Yuan: Kollidierende Kontinente. In: Physik in unserer Zeit. 34, Nr. 5, 2003,ISSN 0031-9252, S. 213–217 (doi:10.1002/piuz.200301021).
  • Dennis McCarthy: Geophysical explanation for the disparity in spreading rates between the Northern and Southern hemispheres. In: Journal of Geophysical Research. Vol. 112, 2007, S. B03410 (doi:10.1029/2006JB004535).
  • Christiane Martin, Manfred Eiblmaier (Hrsg.): Lexikon der Geowissenschaften : in sechs Bänden, Heidelberg [u. a.]: Spektrum, Akademischer Verlag, 2000-2002

Weblinks

 Commons: Plattentektonik – Sammlung von Bildern, Videos und Audiodateien
 Wiktionary: Plattentektonik – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Einzelnachweise

  1. J. Heirtzler, X. Le Pichon, J. Baron: Magnetic anomalies over the Reykjanes Ridge. In: Deep Sea Research. 13, Nr. 3, 1966, S. 427–432 (doi:10.1016/0011-7471(66)91078-3).
  2. John A. Tarduno, Robert A. Duncan, David W. Scholl, Rory D. Cottrell, Bernhard Steinberger, Thorvaldur Thordarson, Bryan C. Kerr, Clive R. Neal, Fred A. Frey, Masayuki Torii, Claire Carvallo: The Emperor Seamounts: Southward Motion of the Hawaiian Hotspot Plume in Earth’s Mantle. In: Science. 301, Nr. 5636, 2003, S. 1064–1069 (doi:10.1126/science.1086442, PDF).
  3. Alexander R. Hutko, Thorne Lay, Edward J. Garnero, Justin Revenaugh: Seismic detection of folded, subducted lithosphere at the core–mantle boundary. In: nature.com (doi:10.1038/nature04757), abgerufen am 13. Juli 2010.
  4. a b Frisch & Meschede 2007
  5.  Harro Schmeling: Plattentektonik: Antriebsmechanismen und -kräfte. In: Geodynamik. 2004 (Vorlesung Geodynamik I und II, WS 2004/2005, PDF, abgerufen am 9. September 2009).
Dies ist ein als exzellent ausgezeichneter Artikel.
Dieser Artikel wurde am 17. Juni 2006 in dieser Version in die Liste der exzellenten Artikel aufgenommen.