Polyeder

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Das Trigondodekaeder, ein Polyeder, das nur von regelmäßigen Dreiecken begrenzt ist.

Ein (dreidimensionales) Polyeder [polyˈeːdər] (auch Vielflach, Vielflächner oder Ebenflächner; von gr. πολύς polýs, „viel“ und ἕδρα hedra, „Sitz(fläche)“) ist im engeren Sinne eine Teilmenge des dreidimensionalen Raumes, welche ausschließlich von geraden Flächen (Ebenen) begrenzt wird, beispielsweise ein Würfel oder ein Oktant eines dreidimensionalen Koordinatensystems.

Der Begriff wird vielfach (vor allem in der Topologie) auch im weiteren Sinne gebraucht und so auf höhere Dimensionen verallgemeinert. Man spricht im Zusammenhang mit geometrischen Fragestellungen auch vom Begriff des Polytops. Im weitgefassten Sinne nennt man eine Teilmenge des  \R^n ein Polyeder, wenn sie triangulierbar ist, wenn sie also als Vereinigung der Simplexe eines simplizialen Komplexes \mathcal{K} \subseteq 2^{\R^n} gebildet werden kann.[1][2] Das homöomorphe Bild eines solchen allgemeinen Polyeders bezeichnet man als krummes Polyeder und die Bilder der beteiligten Simplexe als krumme Simplexe.[3]

Beispiele für Polyeder[Bearbeiten]

Die meisten Spielwürfel sind polyederförmig.

Beispiele für Polyeder aus dem Alltag - verstanden als geometrische Körper - sind (in ihrer üblichen Bauweise) Schränke, Pyramiden, Häuser, Kristalle oder Spielwürfel. Keine Polyeder sind hingegen Kugeln, Kegel, Flaschen, Tortenstücke, da sie krumme Randflächen besitzen. Die wichtigsten Polyeder sind Würfel, Quader, Prismen, Pyramiden und Spate (Parallelepipede).

Besondere dreidimensionale Polyeder[Bearbeiten]

Polyeder, wie sie uns im Alltag begegnen bzw. wie man sie von der Schulmathematik her kennt (vgl. vorhergehender Abschnitt), sind dreidimensional und beschränkt. Sie zählen damit zu den geometrischen Körpern. Ein Polyeder heißt dabei dreidimensional, wenn er in keiner Ebene vollständig enthalten ist. Ein Polyeder heißt beschränkt, wenn es eine Kugel gibt, in der das Polyeder vollständig enthalten ist. Unbeschränkte Polyeder mit nur einer Ecke werden Polyederkegel genannt.

Konvexe Polyeder[Bearbeiten]

Das Dodekaeder, ein platonischer Körper.

Häufig sind dreidimensionale Polyeder zudem konvex. Ein Polyeder heißt konvex, wenn für je zwei Punkte des Polyeders die Verbindungsstrecke zwischen diesen Punkten vollständig im Polyeder liegt. Zum Beispiel ist das nebenstehende Dodekaeder konvex. Ein Beispiel eines nicht-konvexen Polyeders ist das unten gezeigte toroidale Polyeder.

Bei konvexen Polyeder können verschiedene Arten von Regelmäßigkeiten auftreten. Die wichtigsten sind:

  1. Die Seitenflächen sind regelmäßige Vielecke.
  2. Alle Seitenflächen sind kongruent.
  3. Alle Ecken sind gleichartig, das heißt, für je zwei Ecken P,Q kann man das Polyeder so drehen oder spiegeln, dass P in Q überführt wird und das neue Polyeder mit dem ursprünglichen zur Deckung kommt.

Es gibt genau 5 konvexe Polyeder, die alle drei Bedingungen erfüllen, die platonischen Körper (oder auch regulären Polyeder).

Die konvexen Polyeder, die nur die erste und die dritte Bedingung erfüllen, sind (gewisse) Prismen, Antiprismen sowie die 13 archimedischen Körper.

Die konvexen Polyeder, die nur die zweite Bedingung erfüllen, sind die 13 catalanischen Körper. Genauer gesagt muss für diese die etwas stärkere Bedingung der Gleichartigkeit der Seiten (analog zu 3.) erfüllt sein.

Die konvexen Polyeder, die nur die erste Bedingung erfüllen, sind die 92 Johnson-Körper.

Orthogonale Polyeder[Bearbeiten]

Die Flächen eines orthogonalen Polyeders treffen sich im rechten Winkel. Seine Kanten verlaufen parallel zu den Achsen eines kartesischen Koordinatensystems. Mit Ausnahme des Quaders sind orthogonale Polyeder nicht konvex. Sie erweitern die zweidimensionalen orthogonalen Polygone in die dritte Dimension. Orthogonale Polyeder kommen in der algorithmischen Geometrie zum Einsatz. Dort bietet ihre eingeschränkte Struktur Vorteile beim Bewältigen ansonsten ungelöster Probleme (beliebiger Polyeder). Ein Beispiel ist das Entfalten der Polyederflächen in ein polygonales Netz.

Eulerscher Polyedersatz und Euler-Charakteristik[Bearbeiten]

Für konvexe und beschränkte Polyeder gilt der eulersche Polyedersatz:

E + F - K = 2.

Dabei ist E die Anzahl der Ecken, F die Anzahl der Flächen und K die Anzahl der Kanten.

Ein toroidales Polyeder, zusammengesetzt aus 48 gleichseitigen Dreiecken

Gegenbeispiel: Die Punkte des dreidimensionalen Raumes mit den (rechtwinkligen kartesischen) Koordinaten (x,y,z), wobei der Absolutbetrag von x, y und z jeweils kleiner oder gleich 2 ist, bilden einen Würfel der Kantenlänge 4. Wenn wir aus ihm die Punkte entfernen, deren Koordinaten alle vom Betrag <1 sind, entsteht ein nichtkonvexer Polyeder, nämlich ein Würfel, aus dessen Innerem ein kleinerer Würfel ausgebohrt ist, mit 16 Ecken, 24 Kanten und 12 Flächen, in dem der eulersche Polyedersatz nicht gilt.

Für zusammenhängende Polyeder (zu denen das obige Beispiel nicht gehört) gilt allgemein

E + F - K = \chi

mit der Euler-Charakteristik \chi. Für einen Torus zum Beispiel ist \chi=0. Das rechts abgebildete Polyeder ist ein Beispiel dafür. Es hat 24 Ecken, 72 Kanten und 48 Flächen: E - K + F = 24-72+48 = 0.

Literatur[Bearbeiten]

Weblinks[Bearbeiten]

 Commons: Polyeder – Album mit Bildern, Videos und Audiodateien
 Wiktionary: Polyeder – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Einzelnachweise[Bearbeiten]

  1.  Harzheim: S. 34.
  2.  Lee: S. 149.
  3.  Harzheim: S. 35.