Raumkrümmung

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Die Raumkrümmung ist eine mathematische Verallgemeinerung von gekrümmten Flächen (zwei Dimensionen) auf den Raum (drei oder mehr Dimensionen). Die ungekrümmte oder Euklidische Geometrie wird erweitert, um gekrümmte Mannigfaltigkeiten mittels Methoden der nicht-euklidischen Geometrie zu beschreiben.

Zwei-dimensionales Beispiel[Bearbeiten]

Die Oberfläche einer Kugel ist eine 2-dimensionale Fläche, die krumm im 3-dimensionalen Raum liegt.

Obwohl man jeden Punkt der Kugeloberfläche durch seine Koordinaten im 3-dimensionalen Raum angeben kann, ist es oft einfacher, eine zweidimensionale Beschreibung zu wählen. Auf der Erdoberfläche etwa werden Punkte durch Zuordnung einer geographischen Länge und Breite eindeutig bestimmt.

Drei-dimensionale Verallgemeinerung[Bearbeiten]

Entsprechende Vorstellungen verbergen sich hinter der Raumkrümmung. Allerdings sind unsere Sinne auf die Wahrnehmung maximal dreidimensionaler geometrischer Strukturen beschränkt.

Rein formal lässt sich eine entsprechende Krümmung eines 3-dimensionalen 'Obervolumens' einer 4-dimensionalen Kugel formulieren.

Innere und äußere Krümmung[Bearbeiten]

Man unterscheidet bei Krümmungen zwischen einer inneren und einer äußeren Krümmung.

Die innere Krümmung lässt sich anhand der Geometrie im gekrümmten Raum selbst feststellen. Beispielsweise haben Dreiecke auf der Kugeloberfläche eine Innenwinkelsumme von mehr als 180°, im Gegensatz zu ebenen Dreiecken mit einer konstanten Winkelsumme von 180°. Die innere Krümmung kann positiv sein (wie auf einer Kugel) oder negativ (wie beim Kühlturm eines AKWs). In einem negativ gekrümmten Raum ist die Innenwinkelsumme kleiner als 180°.

Die äußere Krümmung kann nur festgestellt werden, indem die Lage des Raums im umgebenden, höherdimensionalen Raum, die so genannte Einbettung, betrachtet wird. Flächen mit äußerer Krümmung, aber ohne innere Krümmung erhält man z. B., indem man ein Blatt Papier aufrollt, wellt, oder sonstwie verbiegt, ohne dass man es entweder zerreißt oder verknittert. Auf solchen Flächen ändern sich die Gesetze der Geometrie nicht (Beispiel: Die Innenwinkelsumme eines aufs Papier gemalten Dreiecks ändert sich nicht, wenn man das Papier aufrollt).

Eindimensionale Räume (Linien) haben grundsätzlich keine innere Krümmung, sondern nur, sofern sie in einen höherdimensionalen Raum eingebettet sind, eine äußere Krümmung.

Praktische Anwendung[Bearbeiten]

Nach heutigem Verständnis wird der dreidimensionale Raum um uns herum und die Zeit durch die Relativitätstheorie Albert Einsteins beschrieben. Raum und Zeit werden zunächst in der Speziellen Relativitätstheorie, die die Gravitation noch nicht enthält, zu einer vierdimensionalen Raumzeit zusammengefasst, die gemäß der Minkowski-Metrik einen nicht gekrümmten („flachen“) Raum bilden. Die Allgemeine Relativitätstheorie geht von einer Krümmung der Raumzeit aus und kann allein dadurch die Wirkungen der Gravitation beschreiben.

Die Theorie geht davon aus, dass ein Körper, auf den keine weiteren Kräfte wirken, sich in der gekrümmten Raumzeit auf einer Geodätischen Linie bewegt. In einer nicht gekrümmten Raumzeit würde dies der Trägheitsbewegung eines freien Körpers entsprechen, d. h. geradlinig und mit konstanter Geschwindigkeit. Aufgrund der Krümmung der Raumzeit erscheint diese Bewegung aber räumlich gekrümmt und beschleunigt. Nach den Einsteinschen Feldgleichungen wird die Krümmung der Raumzeit lokal durch die Verteilung aller Formen von Masse bzw. Energie verursacht. Sie wird gerade so bestimmt, dass sich im Ergebnis bestmögliche Übereinstimmung mit dem Newtonschen Gravitationsgesetz ergibt. Die Krümmung der Raumzeit beschreibt hiernach ein Beschleunigungsfeld, das einerseits von der Verteilung und Bewegung von Energien bzw. Massen herrührt und andererseits ihren Bewegungszustand beeinflusst. Damit stehen Raumzeit und Energie/Masse in direkter Wechselwirkung miteinander. Diese Wechselwirkung ist es, was wir als Gravitation wahrnehmen.

Massive Körper, aber auch Lichtstrahlen folgen nur dann den Geodäten der Raumzeit, wenn nicht zugleich andere Kräfte (z. B. durch Reibung, Brechung oder Reflexion) auf sie wirken. So konnte die Krümmung der Raumzeit erstmals durch die Ablenkung des Lichts durch eine große Masse nachgewiesen werden (s. Tests der allgemeinen Relativitätstheorie)

Im Allgemeinen wird davon ausgegangen, dass die Raumzeit nicht in einen höherdimensionalen Raum eingebettet ist. Somit hat die Raumzeit nur eine innere, aber keine äußere Krümmung.

Siehe auch[Bearbeiten]

Weblinks[Bearbeiten]