Richardson-Extrapolation

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Das Verfahren der Richardson-Extrapolation wurde von Lewis Fry Richardson (1881–1953) entwickelt. Es kann angewendet werden, wenn man bei der numerischen Lösung eines Problems aufgrund zweier verschiedener Diskretisierungen (mit den Schrittweiten h_u und h_g) die Näherungen U_u und U_g für ein Problem hat, und diese Näherungen mit einem Verfahren p-ter Ordnung berechnet worden sind.

Sind diese Voraussetzungen erfüllt, so ist die Extrapolation

U_R=\frac{U_u-U_g\left(\frac{h_u}{h_g}\right)^p}{1-\left(\frac{h_u}{h_g}\right)^p}=U_g+\frac{U_u-U_g}{1-\left(\frac{h_u}{h_g}\right)^p}

eine bessere Näherung für das Ergebnis.

Literatur[Bearbeiten]

  • Hans-Görg Roos, Hubert Schwetlick: Numerische Mathematik. Das Grundwissen für jedermann. Vieweg+Teubner Verlag, Stuttgart u. a. 1999, ISBN 3-519-00221-3, S. 125 (Mathematik für Ingenieure und Naturwissenschaftler).
  • Martin Hermann: Numerische Mathematik. 2. überarbeitete und erweiterte Auflage. Oldenbourg Wissenschaftsverlag, München u. a. 2006, ISBN 3-486-57935-5, S. 412.
  • Guido Walz: The History of Extrapolation Methods in Numerical Analysis. Universität Mannheim – Fakultät für Mathematik und Informatik, Mannheim 1991 (Fakultät für Mathematik und Informatik der Universität Mannheim – Manuskripte 130, ZDB-ID 263563-x), (Online-Version bei der UB Mannheim).

Weblinks[Bearbeiten]