Satz von Tutte

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Der Satz von Tutte (nach William Thomas Tutte) ist ein mathematischer Satz aus der Graphentheorie. Er lautet:

Ein Graph G=(V,E) hat genau dann ein perfektes Matching, wenn für jede Teilmenge S der Knotenmenge V die Anzahl der Zusammenhangskomponenten ungerader Mächtigkeit von G-S höchstens gleich |S|, der Anzahl der Knoten in S, ist.

G-S bezeichnet dabei den Graphen, der entsteht, wenn man die Knoten von S und ihre inzidenten Kanten aus G löscht. Bezeichnet man mit q(G) die Anzahl der Zusammenhangskomponenten mit ungerader Anzahl Knoten in einem Graphen G=(V,E), so lässt sich die zweite Bedingung kurz schreiben als |S| ≥ q(G-S) für alle Teilmengen S von V.

Literatur[Bearbeiten]

  • Lutz Volkmann: Fundamente der Graphentheorie, Springer (Wien) 1996, ISBN 3-211-82774-9, S. 137, Satz 7.2

Weblinks[Bearbeiten]