Scheitelpunkt

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Dieser Artikel erläutert den mathematischen Begriff, zum astronomischen siehe obere Kulmination.

Scheitelpunkte, kurz Scheitel, sind ausgezeichnete Punkte in der Geometrie.

Scheitelpunkt eines Winkels[Bearbeiten]

Unter dem Scheitelpunkt eines Winkels versteht man den gemeinsamen Anfangspunkt der beiden Schenkel (also der begrenzenden Halbgeraden oder Strahlen) dieses Winkels.

Scheitelpunkt eines Kegelschnitts[Bearbeiten]

Die Scheitelpunkte eines Kegelschnitts sind die Schnittpunkte einer solchen Kurve mit deren Symmetrieachsen. Die Ellipse hat vier Scheitel, zwei Hauptscheitel und zwei Nebenscheitel, bei der Hyperbel treten zwei auf, bei der Parabel nur einer, der Kreis hat keinen expliziten Scheitelpunkt.

Scheitelpunkt einer Parabel[Bearbeiten]

Der Scheitelpunkt einer Parabel in der Analysis ist identisch mit dem Hochpunkt (lokales Maximum), wenn sie nach unten geöffnet ist, und identisch mit dem Tiefpunkt (lokales Minimum), wenn die Parabel nach oben geöffnet ist.

Wenn die Lage des Scheitelpunktes bekannt ist, kann die Parabel, soweit es sich um eine Normalparabel handelt, mit Hilfe einer Parabelschablone schnell in ein Koordinatensystem gezeichnet werden. Man kann die Parabelschablone auch zum Zeichnen von Parabeln verwenden, die keine Normalparabeln sind, wenn man das Koordinatensystem entsprechend skaliert.

Scheitelpunktform[Bearbeiten]

Eine Parabel entspricht einer quadratischen Funktion, also einem Polynom zweiten Grades und kann daher in der Form

y = f(x)\, = ax^2 + bx + c\text{ mit }a \neq 0

ausgedrückt werden.

Unter der Scheitelform oder Scheitelpunktform einer quadratischen Funktion versteht man eine bestimmte Form dieser Gleichung, aus welcher man den Scheitelpunkt der Funktion direkt ablesen kann.

Sie lautet  y = f(x) = a (x - d)^2 + e mit dem Scheitelpunkt S(d|e).

Folglich kann die Funktion f(x) = ax^2 + bx + c\text{ mit }a \neq 0 in die Form

f(x) = a\left(x+\frac{b}{2a}\right)^2 + \frac{4ac-b^2}{4a}

überführt werden.

Der Scheitelpunkt lautet dann

 S \left(-\frac{b}{2a} \ \Bigg| \ c-\frac{b^2}{4a} \right) .

In der Schule wird diese Formel aufgrund ihrer Größe meistens nicht gelehrt. Stattdessen wird die quadratische Ergänzung gelehrt, mit deren Hilfe man eine quadratische Funktion in der Polynomform in die Scheitelpunktform überführt.

Herleitung mittels quadratischer Ergänzung[Bearbeiten]

Die obige Formel kann mithilfe der quadratischen Ergänzung hergeleitet werden. Die allgemeine Form wird in die Scheitelpunktform umgeformt.


\begin{align}
 f(x) & = ax^2 + bx + c\\
      &= a \left(x^2 + \frac{b}{a}x\right) + c\\
      &= a \left(\underbrace{x^2+2\,\frac{b}{2a}x + \left(\frac{b}{2a}\right)^2} - \left(\frac{b}{2a}\right)^2\right) + c\\
      &= a \left(\qquad \left(x + \frac{b}{2a}\right)^2 \quad - \quad \left(\frac{b}{2a}\right)^2\right)+c\\
      &= a \left(x + \frac{b}{2a}\right)^2 - a\frac{b^2}{4a^2}+c\\
      &= a \left(x + \frac{b}{2a}\right)^2 + \frac{4ac - b^2}{4a}
\end{align}

Daraus können die Koordinaten des Scheitelpunktes direkt abgelesen werden: d=-\frac{b}{2a},\quad e = \frac{4ac - b^2}{4a}.

Herleitung mittels Ableitung[Bearbeiten]

Da die Steigung im Scheitelpunkt gleich 0 ist, ist es möglich mit Hilfe der ersten Ableitung die obige Formel herzuleiten.


\begin{align}
 f(x)  &= ax^2 + bx + c\\
 f'(x) &= 2ax + b\\
 f'(d) &= 0\\
 0     &= 2ad + b \Rightarrow d = -\frac{b}{2a}
\end{align}

Einsetzen in die Normalform:


\begin{align}
 e &= ad^2 + bd + c\\
      &= a\left( -\frac{b}{2a} \right)^2 + b\left( -\frac{b}{2a} \right) + c\\
      &= \frac{b^2}{4a} -\frac{2b^2}{4a} + \frac{4ac}{4a}\\
      &= \frac{4ac-b^2}{4a} 
\end{align}

Beispiele[Bearbeiten]

Diagramm zu Beispiel 1

Beispiel 1

f(x)=x^2-6x+4

hat den Scheitelpunkt

S \left(-\frac{-6}{2} \ \Bigg| \frac{4 \cdot 4 - (-6)^2}{4} \right), also S(3|-5).

Beispiel 2

f(x)=-x^2+3x+4

Mit a = -1, b = 3 und c = 4 berechnet sich der Scheitelpunkt zu

S \left(-\frac{3}{2 \cdot (-1)}\ \Bigg|\ \frac{4 \cdot (-1) \cdot 4 - 3^2}{4 \cdot (-1)} \right), also S \left(\frac{3}{2}\ \Bigg|\ \frac{25}{4} \right).

Bestimmung der Nullstellen aus der Scheitelpunktsform[Bearbeiten]

Aus der Scheitelpunktsform lassen sich sehr einfach die Nullstellen der jeweiligen quadratischen Funktion bestimmen.

Subsituiert man -\frac{b}{2a} mit d und \frac{4ac - b^2}{4a} mit e, ergibt sich die Form f(x)=a(x-d)^2+e mit dem Scheitelpunkt S(d|e).


Bestimmung der Nullstellen:

\begin{align}
   f(x) & =  0\\[1ex]
   a(x-d)^2+e & = 0\\[1ex]
     a(x-d)^2 &= -e\\[1ex]
    (x-d)^2 &= -\frac{e}{a}\\[1ex]
   x-d &= \pm\sqrt{-\frac{e}{a}} \\[1ex]
   x &= d \pm\sqrt{-\frac{e}{a}} 
\end{align}

Ersetzt man d und e wieder durch -\frac{b}{2a} und \frac{4ac - b^2}{4a}, ergibt sich die a-b-c-Formel:


x = - \frac{b}{2a} \pm \sqrt{ - \frac { \frac{4ac - b^2}{4a}}{a}}  = 
- \frac{b}{2a} \pm \sqrt{ \frac {b^2 - 4ac }{4a^2}} =
- \frac{b}{2a} \pm \frac { \sqrt{b^2 - 4ac }}{2a} =
\frac { -b \pm \sqrt{b^2 - 4ac}}{2a}

Weblinks[Bearbeiten]

Einzelnachweise[Bearbeiten]