Selbstreferenzialität

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von Selbstbezüglichkeit)
Wechseln zu: Navigation, Suche

Die Selbstreferenzialität (von lat. referre „sich auf etwas beziehen“), auch Autoreferenzialität, Selbstreferentialität, Selbstreferenz und Selbstbezüglichkeit, ist ein Begriff, der beschreibt, wie ein Symbol, eine Idee oder Aussage (oder ein Modell, Bild oder Geschichte) auf sich selbst Bezug nimmt.

Abgeleitet wird der Begriff durch die Identität von Symbol und Referent (Bezugsobjekt).

Im engeren Sinn hat der Begriff eine rein logische Bedeutung. Je nach Bereich werden damit unterschiedliche Bezugsobjekte angesprochen.

Logische Paradoxien[Bearbeiten]

Das Konzept der Selbstreferenz ist (u. a. im Zusammenhang mit Cantors Diagonalmethode, Russels Paradox und Gödels Unvollständigkeitssatz) des Öfteren erkenntnistheoretisch untersucht worden. Verschiedene logische Aussagen oder Theorien können im Widerspruch zusammengesetzt und damit in sich sinnentstellt werden und logische Paradoxien erzeugen wie bei der Seltsamen Schleife.

  • Lügner-Paradox: „Dieser Satz ist nicht wahr.“
  • Das Barbier-Paradoxon: „Der (einzige) Barbier eines Dorfes rasiert all jene (und nur jene), die sich nicht selbst rasieren.“

Eine Aussage ohne Selbstwiderspruch ist aber immer in sich stimmig und selbstreferentiell. Jede der klassischen Paradoxien kann durch Tarskis metasprachliches Schema der Konvention T logisch formal heruntergebrochen werden: Die Aussage „x-Paradox ist der Fall“ ist wahr, wenn x-Paradox der Fall ist. Den Paradoxien fehlt tatsächlich die sprachliche Eigenschaft der Gleichsetzung.

Anwendung[Bearbeiten]

Erkenntnistheorie, Philosophie bzw. Logik[Bearbeiten]

  • Denken über Denken

Sprache, Informatik, Mathematik[Bearbeiten]

  • Sätze, die sich auf sich selbst beziehen, wie zum Beispiel: „Dieser Satz wurde von einem Computer aus dem Japanischen übersetzt“. (Dieser Satz ist im Japanischen unsinnig.)

Systemtheorie[Bearbeiten]

Dies ist eine empirische Anwendung. Man versucht (lebende, soziale) Systeme zu beschreiben, die selbst-referentiell sein sollen. Der Begriff kann im systemtheoretischen Zusammenhang mit dem der Autopoiesis betrachtet werden.

Selbstbezügliche Systeme stabilisieren sich auf sich selbst und schließen sich darin von ihrer Umwelt ab. Dadurch gewinnen sie Beständigkeit und ermöglichen Systembildung und Identität. Selbstreferenzielle Systeme sind „operational geschlossen“; in ihren Prozessen beziehen sie sich nur auf sich selbst und greifen nicht in ihre Umwelt hinaus. Die Ressourcenschöpfung ist unabhängig davon zu betrachten.

Literatur und Kunst[Bearbeiten]

In Literatur und Kunst hat die Selbstreferenzialität eine lange Tradition. Hier verwendet man den Fachausdruck Mise en abyme.

Siehe auch[Bearbeiten]

Literatur[Bearbeiten]

Weblinks[Bearbeiten]