Vektordesign

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von Shuttle-Plasmid)
Wechseln zu: Navigation, Suche

Der Begriff Vektordesign bezeichnet in der Gentechnik die gezielte Anpassung eines Vektors zur Erzeugung eines rekombinanten Proteins oder nichtcodierender Ribonukleinsäuren zur Anwendung in vitro oder in vivo. Dies erfolgt beispielsweise zu transienten Zwecken wie bei Impfstoffen (z. B. transiente virale Vektoren oder DNA-Impfstoffe), der transienten Transfektion oder bei onkolytischen Viren sowie zu permanenten Zwecken wie der Gentherapie oder der Erzeugung von gentechnisch veränderten Organismen.

Der Organismus oder Zelltyp bei der Herstellung ist nicht notwendigerweise auch der Zielorganismus des Vektors (engl. shuttle vector ‚Pendelvektor‘, z. B. Plasmide mit eukaryotischen Expressionskassetten, virale Vektoren zur Verpackung in Zellkulturen). Oftmals werden daher Anpassungen an beide Arten von Wirten vorgenommen.

Verfahren und Effekte[Bearbeiten]

Zur Steigerung der Genexpression werden auch die DNA-Abschnitte außerhalb der proteincodierenden Sequenz verändert. Die Wahl des Promotors, Enhancers und Terminators kann die Expressionsmenge steigern,[1][2] sofern sie in der zur Proteinexpression eingesetzten Spezies verwendet werden können. Dabei gibt es deutliche Unterschiede zwischen Säugern, Bakterien und Archaeen.[3][4][5] Kernexportsequenzen können bei Eukaryoten die RNA-Konzentration im Zytosol und somit die Expressionsmenge durch das dortige Ribosom erhöhen.[6] Weiterhin kann durch eine Kozak-Sequenz die Erkennung der mRNA am Ribosom verbessert werden.[7] Durch ein Polyadenylierungssignal sowie durch die Vermeidung von AUUUA-Sequenzen am 3'-Ende kann der vorzeitige Abbau der mRNA gemindert werden.[8] Die modulare Eigenschaft des Polylinkers kann durch eine Insertion (Genetik) oder Deletion einer Erkennungssequenz für Restriktionsenzyme modifiziert werden. Gelegentlich werden modular austauschbare Expressionskassetten verwendet, die einen Austausch durch homologe Rekombination oder durch das RMCE-Kassettenaustauschverfahren erlauben.

Die Replikation eines Plasmidvektors kann durch Einfügen eines oder mehrerer Replikationsursprünge und eventuell notwendiger Centromere auf mehrere Arten erweitert werden, wodurch bei Plasmiden eine längerfristige Expression erreicht werden kann, z. B. bei Plasmiden in Säugerzellen.

Die Veränderung der Protein-codierenden Sequenz wird meistens parallel zum Vektordesign durchgeführt. Im Zuge eines Proteindesigns können z. B. durch eine Codon-Optimierung der Expressionskassette die Expressionsrate gesteigert oder andere Eigenschaften verändert werden.[9]

Hauptartikel: Proteindesign

Vektorsicherheit[Bearbeiten]

Eine maßgebliche Anforderung an einen Vektor ist die Sicherheit seiner Anwendung in Lebewesen, die in Bezug auf den Menschen durch die biologische Schutzstufe gekennzeichnet wird. Die Einteilung der Schutzstufe betrachtet die Pathogenität, welche unter anderem durch die Möglichkeit einer Replikation, einer permanenten Veränderung des Genoms (die Insertion begünstigt eine Tumorentstehung), sowie durch die Infektiosität und die Symptomatik bestimmt wird.

Zur Vermeidung einer überschießenden Immunreaktion werden bei bakteriell erzeugten Vektoren herstellungsbedingte Pyrogene untersucht. Ebenso dürfen bei Plasmiden die Antibiotikum-Resistenz-vermittelnden Resistenzgene, welche bei der Herstellung zur Selektion verwendet werden, nicht auf die Mikroorganismen übertragen werden (z. B. Hautflora, Mundflora und Darmflora). Daher werden alternativ Auxotrophien zur Selektion der transgenen Organismen verwendet oder die Resistenzgene nachträglich entfernt.

Bei viralen Vektoren werden einige zur Replikation notwendige Gene per Deletion entfernt, so dass eine Erzeugung nur durch Komplementation in einer Zelllinie erfolgen kann, die diese Gene zuvor erhalten hat. Dies wird als Replikationsdefizienz bezeichnet. Ebenso kann durch eine Veränderung des Rezeptors der Tropismus im Zuge einer Pseudotypisierung eingeschränkt oder geändert werden. Durch die Verwendung Zelltyp-spezifischer Promotoren kann eine lokale Eingrenzung der Genexpression erreicht werden.

Vor der Entwicklung gentechnischer Methoden wurde eine Erhöhung der Sicherheit eines Virus durch Attenuierung erreicht. Diese Lebendimpfstoffe umfassen z. B. die Schluckimpfung gegen Poliomyelitis oder die Pockenimpfstoffe Vacciniavirus, MVA und NYVAC.

Literatur[Bearbeiten]

Einzelnachweise[Bearbeiten]

  1. J. Y. Qin, L. Zhang, K. L. Clift, I. Hulur, A. P. Xiang, B. Z. Ren, B. T. Lahn: Systematic comparison of constitutive promoters and the doxycycline-inducible promoter. In: PLoS One (2010), Bd. 5(5), S. e10611. PMID 20485554; PMC 2868906 (freier Volltext).
  2. J. Blazeck, H. S. Alper: Promoter engineering: Recent advances in controlling transcription at the most fundamental level. In: Biotechnol J. (2012), doi: 10.1002/biot.201200120. PMID 22890821.
  3. Z. L. Xu, H. Mizuguchi, A. Ishii-Watabe, E. Uchida, T. Mayumi, T. Hayakawa: Strength evaluation of transcriptional regulatory elements for transgene expression by adenovirus vector. In: J Control Release (2002), Bd. 81(1-2), S. 155-63. PMID 11992688.
  4. J. C. Samuelson: Recent developments in difficult protein expression: a guide to E. coli strains, promoters, and relevant host mutations. In: Methods Mol Biol. (2011), Bd. 705, S. 195-209. PMID 21125387.
  5. S. Berkner, G. Lipps: Genetic tools for Sulfolobus spp.: vectors and first applications. In: Arch Microbiol. (2008), Bd. 190(3), S. 217-30. PMID 18542925.
  6. J. E. Donello, J. E. Loeb, T. J. Hope: Woodchuck hepatitis virus contains a tripartite posttranscriptional regulatory element. In: J Virol. (1998), Bd. 72(6), S. 5085-92. PMID 9573279; PMC 110072 (freier Volltext).
  7. M. Kozak: An analysis of 5'-noncoding sequences from 699 vertebrate messenger RNAs. In: Nucleic Acids Res. (1987), Bd. 15(20), S. 8125-48. PMID 3313277; PMC 306349 (freier Volltext).
  8. T. Hamilton, M. Novotny, P. J. Jr. Pavicic, T. Herjan, J. Hartupee, D. Sun, C. Zhao, S. Datta: Diversity in post-transcriptional control of neutrophil chemoattractant cytokine gene expression. In: Cytokine (2010), Bd. 52(1-2), S. 116-22. PMID 20430641; PMC 2919655 (freier Volltext).
  9. E. Kotsopoulou, V. N. Kim, A. J. Kingsman, S. M. Kingsman, K. A. Mitrophanous: A Rev-independent human immunodeficiency virus type 1 (HIV-1)-based vector that exploits a codon-optimized HIV-1 gag-pol gene. In: J Virol. (2000), Bd. 74(10), S. 4839-52. PMID 10775623; PMC 112007 (freier Volltext).