Signalflussgraph

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Ein Signalflussgraph ist eine Darstellung der Signalverarbeitung in einem System durch einen gerichteten, gewichteten Graphen. Die Knoten dieses Graphen sind dabei kleine Bearbeitungseinheiten, die die eingehenden Signale in einer bestimmten Form verarbeiten und das Ergebnis dann an alle ausgehenden Kanten senden[1].

Vom Signalflussplan unterscheiden sie sich durch die Bedeutung der Knoten und Kanten.

Begriffe[Bearbeiten]

Bild 1: Beispiel Signalflussgraph

Signalflussgraphen sind formal definiert. Deshalb zunächst einige Begriffsdefinitionen.

  • Ein Pfad ist eine zusammenhängende Folge von Verbindungen (Kanten) zwischen Knoten in einer Richtung. Im Beispiel ist (X3→X4→X5) ein Pfad.
  • Ein Eingangsknoten hat nur ausgehende Pfade. X1 ist Eingangsknoten.
  • Ein Ausgangsknoten hat nur eingehende Pfade. X6 ist Ausgangsknoten.
  • Ein Vorwärtspfad führt in Richtung Ausgangsknoten. (X2→X3→X4) und (X3→X7→X6) sind Vorwärtspfade.
  • Ein Rückwärtspfad führt in Richtung Eingangsknoten. (X5→X8→X2) ist ein Rückwärtspfad.
  • Eine Rückkopplungsschleife liegt vor, wenn Anfangsknoten und Endknoten gleich sind. (X2→X3→X4→X5→X8→X2) ist eine Rückkopplungsschleife.
  • Eine selbstbezogene Schleife ist ein Pfad der von einem Knoten direkt wieder zum gleichen Knoten führt, ohne über andere Knoten zu führen.

Bild 1 zeigt einen allgemeinen gerichteten, gewichteten Graphen im mathematischen Sinn. Zum Signalflussgraphen wird er erst durch folgende Vereinbarungen:

  • Ein Knoten stellt ein Signal dar.
  • Eine Kante stellt über ihr Gewicht die Verarbeitung des Signals dar. Sie erzeugt also ein neues Signal.

Weiterhin gilt:

Elemente eines Signalflussgraphen[Bearbeiten]

Die Addition erfolgt im Zielknoten.

SFG Addition.png Y=X_1+X_2 \,

y(t)=x_1(t)+x_2(t)\,

Y(s)=X_1(s)+X_2(s)\,

y(n)=x_1(n)+x_2(n)\,

Y(z)=X_1(z)+X_2(z)\,

Die Multiplikation mit einer Konstanten wird unter anderem für die Verarbeitung der Koeffizienten einer Differenzialgleichung verwendet.

SFG KonstMult.png Y=a \cdot X

y(t)=a \cdot x(t)

Y(s)=a \cdot X(s)

y(n)=a \cdot x(n)

Y(z)=a \cdot X(z)

Die Faltung ist ein allgemeines Übertragungsglied.

SFG Faltung.png y(t)=\int_0^t G(t-\tau) \cdot x(\tau) d\tau

Y(s)=G(s) \cdot X(s)

y(n)=\sum_{i=0}^n G(n-i) \cdot x(i)

Y(z)=G(z) \cdot X(z)\,

Den Integrator gibt es nur in zeitlich kontinuierlichen Systemen.

SFG Integrator.png y(t)=\int_0^t x(\tau) d\tau

Y(s)=\frac {1}{s}X(s)

Das Verzögerungsglied gibt es nur in zeitlich diskreten Systemen.

SFG Verzoegerung.png y(n)=x(n-1) \,

Y(z)=z^{-1} \cdot X(z)

Grundschaltungen[Bearbeiten]

Für Signalflussgrafen gelten gleiche Regeln wie für Signalflusspläne. Der einzige Unterschied ist die grafische Darstellung. Auf eine Darstellung der Beziehungen im Zeitbereich wurde hier verzichtet, da diese zu unübersichtlich sind. Die Verhältnisse sind im Bildbereich wesentlich einfacher. Mit den Grundschaltungen können komplexe Signalflussgraphen umgeformt, und damit vereinfacht, werden.

Reihenschaltung

SFG Reihe.png Y=G_1 \cdot G_2 \cdot X

Y(s)=G_1(s) \cdot G_2(s) \cdot X(s)

Y(z)=G_1(z) \cdot G_2(z) \cdot X(z)

Parallelschaltung

SFG Parallel.png Y=(G_1+G_2) \cdot X

Y(s)=(G_1(s)+G_2(s)) \cdot X(s)

Y(z)=(G_1(z)+G_2(z)) \cdot X(z)

Rückkopplung

SFG Rueckkopplung.png Y=\frac {G_1}{1+G_1 \cdot G_2} \cdot X

Y(s)=\frac {G_1(s)}{1+G_1(s) \cdot G_2(s)} \cdot X

Y(z)=\frac {G_1(z)}{1+G_1(z) \cdot G_2(z)} \cdot X

Erstellen von Signalflussgraphen[Bearbeiten]

Aus der Differentialgleichung[Bearbeiten]

Differentialgleichung 4. Ordnung

Gegeben sei die gewöhnliche, lineare, inhomogene Differenzialgleichung mit konstanten Koeffizienten 4. Ordnung

\frac{d^4\left(\frac{y}{b_0}\right)}{dt^4}+a_3\frac{d^3\left(\frac{y}{b_0}\right)}{dt^3}+a_2\frac{d^2\left(\frac{y}{b_0}\right)}{dt^2}+a_1\frac{d\left(\frac{y}{b_0}\right)}{dt}+a_0\left(\frac{y}{b_0}\right)=x(t)

Wir führen die 4 Zustandsgrößen

x_1=\left(\frac{y}{b_0}\right)
x_2=\dot x_1=\frac {d\left(\frac{y}{b_0}\right)}{dt}
x_3=\dot x_2=\frac {d^2\left(\frac{y}{b_0}\right)}{dt^2}
x_4=\dot x_3=\frac {d^3\left(\frac{y}{b_0}\right)}{dt^3}

ein. Damit kann die Differenzialgleichung 4. Ordnung in ein System von 4 Differenzialgleichungen 1. Ordnung

\dot x_1=x_2,\dot x_2=x_3,\dot x_3=x_4

und

\dot x_4=-a_0x_1-a_1x_2-a_2x_3-a_3x_4+x

mit der Ausgangsgleichung

y=b_0x_1\,

überführt werden. Wir brauchen also eine Reihenschaltung von 4 Integratoren im Vorwärtspfad des Signalflussgrafen. Die Multiplikation mit den Koeffizienten a_i, i=0...3\, erfolgt in den zum Summations-Knoten führenden Rückwärtspfaden.

Aus der Übertragungsfunktion[Bearbeiten]

Übertragungsfunktion 4. Ordnung

Gegeben sei die Übertragungsfunktion

G(s)=\frac{b_3s^3+b_2s^2+b_1s+b_0}{s^4+a_3s^3+a_2s^2+a_1s+a_0}.

Nach Multiplikation von Zähler und Nenner mit s^{-4}\, hat die Übertragungsfunktion eine Form aus der sofort die benötigten Integratoren ersichtlich sind.

G(s)=\frac{b_3s^{-1}+b_2s^{-2}+b_1s^{-3}+b_0s^{-4}}{1+a_3s^{-1}+a_2s^{-2}+a_1s^{-3}+a_0s^{-4}}

Im Zähler stehen die Faktoren des Vorwärtspfades und im Nenner die des Rückwärtspfades. Damit kann der Signalflussgraph direkt gezeichnet werden.

Aus dem Signalflussplan[Bearbeiten]

Signalflussplan einer Übertragungsfunktion 4. Ordnung

Durch Vertauschung von Knoten und Kanten erhält man aus dem Signalflussgraphen den Signalflussplan und umgekehrt.

Modifikationen von Signalflussgraphen[Bearbeiten]

Ich gleicher Weise wie lineare Gleichungssysteme umgeformt werden können, kann auch der dazugehörige Signalflussgraph umgeformt werden. In den folgenden Abschnitten werden die verschiedenen Methoden erläutert.

Parallele Kanten zusammenfassen[Bearbeiten]

Unterschiedliche Kanten mit der gleichen Quelle und der gleichen Senke können zu einer Kante zusammengefasst werden. Es wird also das Distributivgesetz angewandt:

x_1*a+x_1*b=x_1*(a+b).

Dazu müssen im Signalflussgraphen die Vektoren der zusammengefassten Kanten addiert werden[2].

Kanten mit gleichem Quell- und gleichem Zielpunkt können zusammengefasst werden.

Sequentielle Kanten zusammenfassen[Bearbeiten]

Werden drei Punkte a, b und c ausschließlich durch zwei Kanten derart verbunden, so dass gilt a\rightarrow b\rightarrow c, dann kann der mittlere Knoten b aus der Darstellung herausgenommen werden[2]. Es wird also das Assoziativgesetz angewandt:

(x_1*a)*b=x_1*(a*b).

Software[Bearbeiten]

Es gibt einige Programme zur Erstellung von Signalflussgraphen. In diesem Beitrag wurde das Programm yEd von yWorks benutzt. Es ermöglicht das Zeichnen von Graphen mit verschieden Knotenformen (z. B. Kreis, Rechteck) und Kanten (Bogen oder Linienzug). Eine Simulation des Systems ist damit, im Gegensatz zum Programm Simulink, das Signalflusspläne nutzt, nicht möglich.

Einzelnachweise[Bearbeiten]

  1. Mason, Samuel J.: Feedback Theory - Some Properties of Signal Flow Graphs, Proceeding of the IRE, 1953, vol. 41, S. 1144-1156
  2. a b Strauß, Frieder: Grundkurs Hochfrequenztechnik, Vieweg+Teubner Verlag, Wiesbaden 2012, S. 172-175