Stationäre Wavelet-Transformation

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Stationäre Wavelet-Transformation der Lena unter Verwendung des Haar-Wavelets

Die stationäre Wavelet-Transformation (SWT)[1] ist ein Wavelet-Transformationsalgorithmus, der die Verschiebungsvarianz der diskreten Wavelet-Transformation (DWT) beseitigen soll. Diese führt bei minimal verschobenen Signalen zu erheblich anderen Wavelet-Koeffizienten und nicht zu minimal verschobenen, aber ansonsten gleichen Koeffizienten.

Die stationäre Wavelet-Transformation stellt in der Signalanalyse bezüglich der Zeit- oder Ortsachse eine Alternative zur kontinuierlichen Wavelet-Transformation dar, ist aber skalendiskret.[2] Beispielsweise wird sie zur Kantendetektion eingesetzt.

Die Verschiebungsinvarianz wird durch das Entfernen von Up- und Downsampling-Schritten der DWT und Hinzufügen von Upsampling der Filter-Koeffizienten mit einem Faktor von 2^{(j-1)} auf der jten Skala des Algorithmus erreicht.[3] Die SWT ist ein inhärent redundantes Schema, da die Ausgabe auf jeder Skala der SWT die gleiche Anzahl an Samples enthält wie die Eingabe. Somit entsteht bei einer Zerlegung auf N Skalen eine N-fache Redundanz der Wavelet-Koeffizienten.

Der Algorithmus ist auch bekannt als "algorithme à trous" im Französischen (trous: Löcher), was sich auf die eingefügten Nullen in die Filterkoeffizienten bezieht. Er wurde von Holschneider et al. eingeführt.[4]

Implementierung[Bearbeiten]

Das folgende Blockdiagramm stellt eine digitale Implementierung der SWT dar.

Eine 3-Skalen-SWT-Filterbank

In obigem Diagramm werden für jede Skala die Filter der vorherigen Skala verwendet, bei denen die Abtastrate erhöht wurde (Upsampling) (siehe nachfolgende Abbildung).

SWT-Filter

Anwendungsgebiete[Bearbeiten]

Die SWT findet Anwendung in verschiedenen Bereichen, z. B. in

Synonyme[Bearbeiten]

Die Idee, das Unterabtasten der diskreten Wavelet-Transformation auszulassen, ist hinreichend intuitiv, dass diese Variante verschiedene Male "erfunden" wurde, jeweils mit unterschiedlichen Namen.

  • stationäre Wavelet-Transformation (stationary wavelet transform)
  • redundante Wavelet-Transformation (redundant wavelet transform)
  • Algorithme à trous
  • quasi-kontinuierliche Wavelet-Transformation (quasi-continuous wavelet transform)
  • verschiebungsinvariante Wavelet-Transformation (shift-invariant wavelet transform)
  • translationsinvariante Wavelet-Transformation (translation-invariant wavelet transform)
  • Wavelet-Transformation mit maximaler Überlappung (maximal overlap wavelet transform, MODWT)
  • Undecimated wavelet transform (UWT)
  • Cycle spinning

Einzelnachweise[Bearbeiten]

  1. James E. Fowler: The Redundant Discrete Wavelet Transform and Additive Noise, enthält einen Überblick über die verschiedenen Namen für diese Transformation.
  2. W. Bäni: Wavelets: Eine Einführung für Ingenieure. Oldenbourg Wissenschaftsverlag 2005
  3. Mark J. Shensa, The Discrete Wavelet Transform: Wedding the A Trous and Mallat Algorithms, IEEE Transaction on Signal Processing, Vol 40, No 10, Oct. 1992.
  4. M. Holschneider, R. Kronland-Martinet, J. Morlet and P. Tchamitchian. A real-time algorithm for signal analysis with the help of the wavelet transform. In Wavelets, Time-Frequency Methods and Phase Space, pp. 289–297. Springer-Verlag, 1989.