Tokamak

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Tokamak-Anordnung:
Die zum Einschluss des violett dargestellten Plasmas notwendigen, schraubenförmig verdrillten Magnetfeldlinien (gelbe Pfeile) entstehen durch die Überlagerung von Magnetfeldern (grüne Pfeile), die durch Ströme in den ebenen Magnetfeldspulen und durch den im Plasma fließenden, rot dargestellten Strom erzeugt werden.

Tokamak ist ein Konzept für einen Fusionsreaktor, bei dem das heiße Plasma in einem Torus von Magnetfeldspulen eingeschlossen wird. Dabei wird ein Teil des Magnetfeldes von einem im Plasma fließenden Strom erzeugt. Das zum Tokamak komplementäre Konzept der Fusion mittels magnetischen Einschlusses ist der Stellarator.

Das Konzept wurde 1952 von den sowjetischen Physikern Andrei Sacharow und Igor Jewgenjewitsch Tamm am Kurtschatow-Institut[1] in Moskau entwickelt. Bereits in den 1950er Jahren wurden daraufhin die ersten Tokamak-Experimente in der Sowjetunion durchgeführt. Als erster Tokamak gilt der russische T3 von 1962.[2]

Das Wort ist eine Transliteration des russischen токамак, eine Abkürzung für „тороидальная камера в магнитных катушках“ ('raidalʲnaia kamʲɛra v magnitnɨx katuʃkax), übersetzt Toroidale Kammer in Magnetspulen. Auch verweist die Silbe ток auf Strom und damit den Stromfluss im Plasma, die entscheidende Besonderheit dieses Einschlusskonzepts.

Die derzeit leistungsfähigsten Anlagen zur Untersuchung der Fusion mittels des magnetischem Einschlusses basieren auf dem Tokamak Prinzip.

Hintergrund[Bearbeiten]

Hauptartikel: Kernfusionsreaktor

Gegen Mitte des 20. Jahrhunderts begann die erfolgreiche Entwicklung der zivilen Nutzung der Kernenergie und auch die Testexplosionen von Wasserstoffbomben verliefen wie geplant. In den 1950er Jahren begannen Physiker, die Möglichkeiten einer Energiegewinnung aus der kontrollierten Kernfusionsreaktion von Wasserstoff-Isotopen zu erforschen. Die Teilchen müssen dazu ein extrem heißes Plasma bilden, in dem bei bestimmten Bedingungen (siehe Lawson-Kriterium) die Thermonukleare Reaktion selbsterhaltend abläuft.

Beim Einschluss des heißen Plasmas in ein klassisches Gefäß würde das Plasma sofort auskühlen. Um einen Abstand von der Gefäßwand herzustellen, ist die Lorentzkraft geeignet, mit der durch magnetische Felder eine Kraft auf bewegte geladene Teilchen ausgeübt werden kann (siehe auch Fusion mittels magnetischen Einschlusses).

Konzept[Bearbeiten]

Magnetfeld[Bearbeiten]

Tokamak-Felder

Zur Umsetzung dieses Ansatzes schlugen Sacharow und Tamm einen Torus-förmigen Fusionsreaktor vor, dessen Ring von Feldspulen umschlossen ist, deren „toroidales“ Magnetfeld das im Torus rotierende Plasma eingeschlossen hält (obere Abbildung).

Es wurde jedoch auch schon in der Theorie ein Problem erkannt, das sich aus der Magnetohydrodynamik des Plasmas ergibt, wonach die im inneren Bereich des Torus rotierenden Teilchen mit denen des äußeren Bereichs Verwirbelungen bilden. Um dies zu vermeiden, müssen die Teilchenbahnen zusätzlich eine Drehung innerhalb des Torus-Querschnitts durchführen, die magnetischen Feldlinien also spiralförmig verlaufen. Diese Verdrillung der Magnetfeldlinien wird beim Tokamak erreicht, indem man im Plasma selbst einen elektrischen Strom fließen lässt. Der Strom erzeugt ein Magnetfeld mit poloidal verlaufenden Feldlinien (mittlere Abbildung). Dieses überlagert sich dem durch die Spulen erzeugten toroidalen Feld, so dass sich der gewünschte spiralförmige Feldverlauf ergibt (untere Abbildung).

Die Magnetspulen eines Fusionsreaktors (nicht nur beim Tokamak) müssen für eine wirtschaftliche Netto-Energiegewinnung aus Supraleitern bestehen, damit ihr elektrischer Energiebedarf gering bleibt.

Erzeugung des Plasmastroms (Stromtrieb)[Bearbeiten]

Das Plasma kann als Sekundärwicklung eines Transformators wirken. Als Primärwicklung wirkt eine zentrale „Poloidal“-Feldspule im Torus-Zentrum, ergänzt durch weitere, koaxial mit dem Torus gelegene Ringspulen. Dieses Verfahren, den Plasmastrom durch elektrische Induktion zu erzeugen, kann allerdings wie bei jedem Transformator keinen Dauerstrom liefern, da man den Primärstrom nicht ständig steigern kann, der Transformatorhub also begrenzt ist. Von Zeit zu Zeit muss der Primärstrom abgeschaltet werden; der Plasmaeinschluss geht während der Pause verloren, die Kernfusion setzt aus und muss danach neu „gezündet“ werden. Ein solcher Tokamak arbeitet also nicht kontinuierlich, sondern gepulst. Für große Tokamaks wie ITER rechnet man mit Pulsdauern der Größenordnung 15 Minuten. Der Pulsbetrieb wäre für Leistungsreaktoren nur eine Notlösung, denn die großen Kräfte, die die Feldspulen aufeinander ausüben, würden dabei als Wechsellasten auftreten, die Strukturteile also besonders stark beanspruchen.

Deshalb wird an anderen Techniken zum Erzeugen und Aufrechterhalten des Plasmastroms geforscht. In Frage kommen vor allem die Neutralteilcheninjektion, die zugleich auch zur Plasmaheizung dient (siehe unten), sowie die Einstrahlung elektromagnetischer Wellen der sog. unteren Hybridfrequenz.[3] Man hofft, mit diesen zusätzlichen Stromtriebmethoden einen kontinuierlichen Betrieb von Tokamak-Kraftwerksreaktoren zu erreichen.

Aufheizen des Plasmas[Bearbeiten]

Der derzeit größte Tokamak JET, aufgenommen 1991: Das Plasmagefäß mit einem Durchmesser von 6 Metern und einer Höhe von 2,4 Meter ist hinter den (orangen) Eisenjochen der toroidalen Magnetfeldspulen sowie Mess-, Heiz- und Kühlsystemen nahezu verborgen. Zum Größenvergleich beachte man die beiden Techniker unten in der Mitte.

Im Fusionsreaktor wird ein Teil der Reaktionsenergie, hauptsächlich die Rückstoßenergie, das Plasma heizen und die Energieverluste zur Wand ausgleichen. Dieser Zustand des „Brennens“ setzt bei Tokamaks wegen der geringen Dichte und Energieeinschlusszeit erst bei über 10 keV (über 100 Millionen °C) ein und muss für jeden neuen Puls (s. o.) zunächst auf andere Weise erreicht werden.

Ohmsche Heizung[Bearbeiten]

Das Kennzeichen des Tokamak-Konzepts ist der im Plasma induzierte elektrische Strom. Diese ohmsche Heizung bzw. Widerstandsheizung bewirkt zwangsläufig auch eine Aufheizung des Plasmas. Dabei handelt es sich um die gleiche Art von Aufheizung wie beim Glühdraht einer Glühlampe oder einer Elektroheizung (Haartrockner, Heizlüfter etc.). Die Wärmeleistung hängt vom Widerstand des Plasmas und der Spannung ab. Da die Temperatur steigt, nimmt der elektrische Widerstand des Plasmas ab, und die ohmsche Heizung wird weniger effektiv. Die durch ohmsche Heizung erreichbare Maximaltemperatur in einem Tokamak scheint bei etwa 20–30 Millionen °C zu liegen. Um höhere Temperaturen zu erreichen, müssen andere Heizverfahren angewandt werden.

Neutralteilcheninjektion[Bearbeiten]

Neutralteilcheninjektion bedeutet den Einschuss schneller Atome oder Moleküle in das durch ohmsche Heizung aufgeheizte, magnetisch eingeschlossene Plasma. Auf ihrem Weg durch das Plasma werden die Atome ionisiert und deshalb vom Magnetfeld gefangen. Dann übertragen sie einen Teil ihrer Energie auf die Plasmateilchen, indem sie wiederholt mit ihnen zusammenstoßen und so die Plasmatemperatur erhöhen. Als Neutralteilchen kommen vor allem Deuterium- und Tritium-Moleküle in Frage, sodass diese Plasmaheizung zugleich zur Brennstoffnachfüllung beiträgt.

Magnetische Kompression[Bearbeiten]

Gase können durch plötzliche Erhöhung des Drucks aufgeheizt werden. Auf dieselbe Weise erhöht sich die Temperatur eines Plasmas, wenn das einschließende Magnetfeld stärker wird. In einem Tokamak wird diese Kompression erreicht, indem das Plasma in eine Zone höherer magnetischer Feldstärke verschoben wird (z. B. nach innen). Da Plasmakompression die Ionen einander annähert, hat das Verfahren zusätzlich den Vorteil, dass es die Erzielung der für die Fusion erforderlichen Dichte erleichtert.

Mikrowellenheizung[Bearbeiten]

Hauptartikel: Zyklotron-Resonanzheizung

Hochfrequente elektromagnetische Wellen von geeigneter Frequenz und Polarisation werden durch Oszillatoren (Gyrotrons oder Klystrons) außerhalb des Torus erzeugt. Ihre Energie kann auf die geladenen Teilchen im Plasma übertragen werden, welche wiederum mit anderen Teilchen im Plasma kollidieren und so die Temperatur erhöhen. Es gibt verschiedene Methoden, je nachdem, ob die Energie zunächst auf die Elektronen oder die Ionen des Plasmas übertragen wird.

Alternative: der Stellarator[Bearbeiten]

Hauptartikel: Stellarator

Die zweite Möglichkeit, die zum Einschluß eines Plasmas in einem toroidalen Magnetfeld benotigte spiralförmige Verdrillung der Magnetfeldlinien herbeizuführen, ist der Stellarator. Hier werden Torus und / oder Magnetfeldspulen selbst bereits so verdrillt, anschaulich in Form eines Möbiusbandes, dass auch der poloidale (im Querschnitt des Ringes wirksame) Anteil des Feldes durch die Spulen erzeugt wird, anstatt durch einen im Plasma induzierten Strom wie beim Tokamak.

Ein Stellarator benötigt somit keinen im Plasma fließenden Strom, der im klassischen Tokamak in der Art eines Transformators erzeugt wird, und ist daher im Unterschied zum gepulsten Betrieb eines Tokamaks unmittelbar für den Dauerbetrieb geeignet. Wegen der komplexeren Spulen sind Konstruktion und Fertigung sowie Wartungs- und Reparaturarbeiten aber aufwändiger. Eine Optimierung der Spulengeometrie dank leistungsfähiger Computerprogramme und die Fertigung solcher Spulen gelangen erst in jüngerer Zeit; dadurch weist die Tokamak-Entwicklung einen zeitlichen Vorsprung auf. Mit Wendelstein 7-X wird im nordostdeutschen Greifswald aktuell erstmals ein großer Stellarator mit einer solchen optimierten Spulengeometrie aufgebaut, um das Stellarator-Konzept auf seine Eignung für einen Fusionsreaktor zu untersuchen.

Mischformen zwischen den beiden Konzepten[Bearbeiten]

Grundsätzlich sind viele physikalische und technische Fragestellungen für Tokamak und Stellarator ähnlich. Es gibt zudem Mischformen zwischen den beiden Konzepten, die Gegenstand aktueller Forschung sind:

Seitens der Tokamak-Entwicklung wird untersucht, inwieweit zusätzliche äußere Magnetgeldspulen mit helikal–stellaratorartiger Symmetrie helfen können, unerwünschte Instabilitäten am Plasmarand zu unterdrücken oder zu verringern. Bereits vergleichsweise geringe Magnetfelder sind hier anscheinend ausreichend; das Gesamtsystem ist daher trotzdem im Wesentlichen ein Tokamak. Plasmarand-Instabilitäten, sogenannte ELMs (Edge Localized Modes), lassen kurzfristig heißes Plasma aus der äußersten Schicht des eingeschlossenen Plasmas auf die Plasmawand und den Divertor prallen, was wegen der hohen Leistungsdichte zu Schädigungen führen kann.

Seitens des Stellarators erlauben sogenannte quasi-toroidale Magnetfeldgeometrien, einen Teil der benötigten Verdrillung der Feldlinien über den vom Druckgradienten des Plasmas selbst getriebenen Strom zu erzeugen. Dies wäre ähnlich einem Tokamak.

Aktuelle Forschung[Bearbeiten]

Das Innere des Tokamak à configuration variable, Abmessungen: Höhe 1,40 m, großer Radius 0,875 m

Die bisher leistungsfähigsten Anlagen zum magnetischen Einschluss eines Fusionsplasmas waren Tokamaks. Der 1984 fertiggestellte Joint European Torus (JET) in Culham nahe Oxford, Großbritannien ist der größte in Betrieb befindliche Tokamak. Hier sowie an der Anlage TFTR in Princeton wurde auch bereits mit der in einem Fusionskraftwerk benötigten Mischung aus Deuterium und Tritium experimentiert. Die dabei erreichte Fusionsleistung betrug kurzfristig am JET 65% der zur Heizung des Plasmas aufgewendeten Leistung. Für größere Fusionsleistungen sind größere Dimensionen und verbesserte Einschlusseigenschaften des Magnetfelds erforderlich. Zudem müssen weitere technische Fragen gelöst werden wie die laufende Zufuhr neuen Brennstoffs und die Abführung der Fusionsprodukte (Helium), die dauerhafte Kühlung der supraleitenden Spulen oder die intermittierenden Zündungen.

ITER, die nächstgrößere Tokamakanlage, ist im südfranzösischen Cadarache im Bau (Stand 2014). Die Anlage soll erstmals einen Netto-Energiegewinn demonstrieren, jedoch noch keine elektrische Energie produzieren. Das erste vollständige Fusionskraftwerk wird nach jetzigen Planungen dessen Nachfolgeanlage DEMO sein.

In Deutschland wird das Tokama-Konzept derzeit an ASDEX Upgrade am Max-Planck-Institut für Plasmaphysik in Garching bei München untersucht. Der Tokamak TEXTOR des Forschungszentrums Jülich wurde Ende 2013 stillgelegt.

Siehe auch[Bearbeiten]

Quellen[Bearbeiten]

  1. Startschuss für Fusionsreaktor – Artikel bei heise online, vom 22. November 2006
  2. Deutsche Phys. Gesellschaft, Webseite Stand 31. Oktober 2011: Magnetisch eingeschlossene Fusionsplasmen.
  3. Artikel „Stromtrieb“ bei www.techniklexikon.net

Weblinks[Bearbeiten]

 Commons: Tokamak – Sammlung von Bildern, Videos und Audiodateien
  • EFDA JET – Bilder, Grafiken und Videos des JET Tokamak