Transistor-Transistor-Logik

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Die Transistor-Transistor-Logik (TTL) ist eine Schaltungstechnik (Logikfamilie) für logische Schaltungen (Gatter), bei der als aktives Bauelement der Schaltung planare npn-Bipolartransistoren verwendet werden. Meist wird am Eingang ein Multiemitter-Transistor eingesetzt, so dass für mehrere Eingänge nur ein Transistor erforderlich ist.

7400-Chip (Vierfach-NAND-Gatter) aus dem Jahr 1976

Geschichte[Bearbeiten]

Die TTL-Technik wurde 1961 von James L. Buie bei TRW erfunden.[1] Die ersten kommerziellen Schaltkreise produzierte die Firma Sylvania Electric Products.[2] Eine ebenfalls auf Bipolartransistoren basierende Weiterentwicklung mit geringeren Stromverbrauch stellt die integrierte Injektionslogik (I2L) dar.

Standard-TTL[Bearbeiten]

Aufbau eines NAND-Gatters in Standard-TTL-Technik
Type: 7400; PV = 10 mW; tpd = 10 ns

Standard-TTL-Schaltkreise sind für einen Betrieb an einer Versorgungsspannung von 5 V mit einer Abweichung von 5 % ausgelegt. Gegenüber zu niedriger Betriebsspannung reagiert die TTL-Technik relativ tolerant, so dass meist auch der Betrieb beispielsweise an einer 4,5-Volt-Flachbatterie möglich ist. Noch niedrigere Werte wirken sich beispielsweise auf die Belastbarkeit der Ausgänge aus (Fanout), so dass in der Regel kein stabiler Betrieb mehr garantiert ist.

Eine hohe Spannung ist als High-Pegel (in positiver Logik eine logische 1) definiert, eine niedrige Spannung wird als Low-Pegel bezeichnet (in positiver Logik eine logische 0). Die Schaltkreise sind so dimensioniert, dass Eingangsspannungen UE < 0,8 V als Low-Pegel, und UE > 2,0 V als High-Pegel erkannt werden. Die Ausgangsspannung UA beträgt typisch < 0,4 V für den Low-Pegel und > 2,4 V für den High-Pegel bei der zulässigen Last. Der statische Störabstand beträgt somit sowohl für High- als auch für Low-Pegel 0,4 V.

Logische Bausteine in TTL-Technik haben den Vorteil, dass sie unempfindlicher gegenüber elektrostatischen Entladungen sind als CMOS-Bausteine. Der Nachteil liegt wegen der stromgesteuerten Transistoren in einer im Vergleich zu CMOS deutlich höheren Leistungsaufnahme (Stromverbrauch) bei statischem Betrieb.

Das nebenstehende Bild zeigt den Aufbau eines TTL-NAND-Gatters. V1 ist der Multiemitter-Transistor, U1 und U2 sind die Eingangsspannungen. Eine Besonderheit der TTL-Schaltung besteht darin, dass unbeschaltete Eingänge wirken, als lägen sie auf High-Pegel. Praktisch sollen unbenutzte Eingänge auf ein festes Potential gelegt werden, damit sichergestellt werden kann, dass die Schaltung korrekt arbeitet. Unbeschaltete Eingänge können die passive Störsicherheit einer Schaltung massiv verschlechtern.

Funktionsweise[Bearbeiten]

TTL-Gatter arbeiten im Prinzip wie DTL-Gatter. Ein Unterschied besteht lediglich in der Ausführung des Dioden-Gatters sowie des Verstärkers. Der Verstärker besteht aus dem Ansteuertransistor V2 und einer Gegentakt-Endstufe (Totem-Pole-Schaltung).

Die Ansteuerung erfolgt, indem U1 oder U2 auf einen Low-Pegel (bzw. Masse) gelegt werden. Dadurch wird V1 leitend, da nun über R1 ein Basisstrom fließt. Die Basis von V2 wird dadurch nahezu auf Masse (UV1Sat) gelegt, wodurch V2 sperrt. Damit liegt die Basis von V3 auf High, die von V4 auf low. V3 leitet also und legt den Ausgang auf high. Sind die Eingänge mit high beschaltet, so wird V2 über die Basis-Kollektor-Strecke von V1 mit Strom versorgt und leitend. V3 wird gesperrt und V4 leitend. Nur in diesem Zustand liegt der Ausgang auf low.

In der „open collector“-Ausführung (offener Kollektor) fehlt V3, der Kollektor von V4 wird also offen zum Ausgang geführt. In diesem Fall muss an Stelle von R3 ein externer „pull up“-Widerstand angeschlossen werden. Diese Bauform ermöglicht es, mehrere Ausgänge parallel zu schalten, zu einem „Wired-AND“ (verdrahtetes UND). Jedes der so parallel geschalteten Gatter kann den Strom eines nachfolgenden Gatters aufnehmen, ohne von den anderen beeinflusst zu werden und so den folgenden Eingang auf low schalten.

Varianten[Bearbeiten]

Low-Power-Schottky-TTL[Bearbeiten]

NAND-Gatter in Low-Power-Schottky-TTL-Bauweise
Type: 74LS00; PV=2 mW; tpd=10 ns
Übertragungskennlinie eines Low-Power-Schottky-TTL-Inverters

Um die Sättigung der Transistoren zu verhindern, können in der Basis-Kollektor-Strecke Schottky-Dioden parallel geschaltet werden, so dass die Spannung der Basis nie mehr als 0,3 V über dem Kollektorpotential liegen kann. Dadurch ergibt sich ein Schottky-Transistor. Diese Parallelschaltung verhindert ein Absinken der Kollektor-Emitter-Spannung unter 0,3 V. Die Dimensionierung kann für diesen Schaltungstyp wesentlich hochohmiger ausgelegt werden, wodurch sich auch eine wesentlich geringere statische Leistungsaufnahme ergibt. Auf die Gatterlaufzeit hat das keinen Einfluss. Die zur Potentialverschiebung notwendige Diode wurde im abgebildeten Beispiel durch eine Darlington-Schaltung ersetzt.

Low-Voltage-TTL[Bearbeiten]

Low-Voltage-TTL (LVTTL) ist eine besondere Form der Transistor-Transistor-Logik (Logikfamilie), bei der die Versorgungsspannung von 5 V auf 3,3 V reduziert ist.

Low-Voltage-TTL-Logikpegel
Symbol Parameter min max
UIH High-Level Input Voltage 2 V UDD + 0,3 V
UIL Low-Level Input Voltage −0,3 V 0,8 V
UOH High-Level Output Voltage 2,4 V  
UOL Low-Level Output Voltage   0,4 V

Alte Typen und ihre Bezeichnungen[Bearbeiten]

Standard TTL-ICs erkennt man an einer Bezeichnung der Form 74xx bzw. 74xxx, wobei „74“ auf die Logikfamilie und xx/xxx auf den Gatter-Typ (z. B. xx = „00“ entspricht NAND) verweist. Die meisten Bausteine gibt es auch als 54xx für den militärischen Temperaturbereich bzw. als 84xx für den industriellen Temperaturbereich. In TTL-Technik aufgebaut sind auch die wenig verbreitete 49xx-Serie sowie die 75xx-Serie, die in erster Linie Interface-, Pegelwandler- und andere Anpassschaltungen umfasst.

Die Bezeichnungen der Varianten orientieren sich im Allgemeinen an dem Standardtyp, zu dem der Baustein anschluss- und funktions-kompatibel ist, wobei die Variante durch eingeschobene Buchstaben gekennzeichnet wird. Der Versorgungsspannungsbereich und die Signalpegel sind nicht notwendig kompatibel. Neben den bisher genannten gibt es noch zahlreiche weitere TTL-Varianten. Beispielsweise sind zum 7400 kompatibel:

  • 74L00: Low-Power TTL mit geringerem Stromverbrauch bei geringerer Schaltgeschwindigkeit
  • 74H00: High-Speed TTL mit sehr viel höherer Schaltgeschwindigkeit bei höherem Stromverbrauch
  • 74S00: Schottky TTL mit höherer Schaltgeschwindigkeit bei höherem Stromverbrauch
  • 74F00: Fast-Schottky
  • 74AS00: Advanced Schottky

Die CMOS-Serien 40xx aus den 1980er Jahren zeichnen sich durch eine breite Versorgungsspannung von 3 bis 15 V aus. Die Grenzfrequenz liegt bei 1 MHz, weshalb 40xx-Bausteine bei Neuentwicklungen praktisch keine Rolle mehr spielen.

Aktuelle Typen[Bearbeiten]

Gängige TTL-Bausteine tragen die Bezeichnung 74nnxx, wobei die Zahl xx den Baustein spezifiziert. Bausteine des Typs 74xx sind obsolet.

  • 74LSxx: (low power schottky): Nachfolger der 74xx, Vorläufer der folgenden 74-CMOS Bausteine
  • 74HCxx: Standard Logikbausteine (Stand 2012).
    • U_v= 2 V - 6 V,
    • I_max = 4 mA (bis 20 mA, sofern keine weiteren Logikbausteine angesteuert werden)
    • Alle unbenutzten Eingänge müssen auf definierten Potenzial liegen (+ oder -).
    • Max. Frequenz: um 25 MHz
  • 74HCTxx: ähnlich HC, gleichzeitig aber TTL-kompatibel (d.h. passend zu 74LSxx)
    • U_v= 4.5 V - 5.5 V
  • 74ACxx: sehr schnelle Standard CMOS Logikbausteine
  • 74ACTxx: ähnlich AC, aber TTL kompatibel

Verwandte Logikfamilien[Bearbeiten]

Als Vorläufer-Logikfamilien der TTL-Familie können die Widerstands-Transistor-Logik und die Diode-Transistor-Logik betrachtet werden. Diese beiden Logikfamilien sind veraltet und haben heute praktisch keine Bedeutung mehr.

Nah mit der TTL-Familie ist die langsame störsichere Logik verwandt, die in der Vergangenheit für Spezialanwendungen eingesetzt wurde. Heute hat diese Logikfamilie ebenfalls praktisch keine nennenswerte Bedeutung mehr.

Literatur[Bearbeiten]

  • Klaus Wüst: Mikroprozessortechnik. 2. aktualisierte und erweiterte Auflage, Friedr. Vieweg & Sohn Verlag | GWV Fachverlage GmbH, Wiesbaden 2006, ISBN 978-3-8348-0046-6.

Weblinks[Bearbeiten]

Einzelnachweise[Bearbeiten]

  1. Patent US3283170: Coupling Transistor Logic and Other Circuits. Veröffentlicht am 1. November 1966, Erfinder: J. Buie.
  2. 1963 - Standard Logic Families Introduced. The Computer History Museum, abgerufen am 17. Februar 2010.