Ersatzschaltungen des Bipolartransistors

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von Transportmodell)
Wechseln zu: Navigation, Suche

Um das Verhalten eines Bipolartransistors oder Feldeffekttransistors auch in komplexen Schaltungen berechnen zu können, benötigt man ein vereinfachtes, abstraktes, Modell. Hierbei werden verschiedene Stufen der Abstraktion verwendet. Hierbei werden meist einfache Modelle zur Dimensionierung und komplexere Modelle bzw. deren Ersatzschaltbild zur Schaltungssimulation verwendet.

Theoretisch wäre auch eine exakte Berechnung des physikalischen Verhaltens beispielsweise über eine Monte-Carlo-Simulation möglich, aber schon in relativ einfachen elektrischen Netzwerken übersteigt der Rechenaufwand einer solchen Simulation die Leistung heutiger Computer. Die Modelle dienen daher zur Vereinfachung und hinreichenden Nachbildung der realen Abläufe, um so den Rechenaufwand drastisch zu reduzieren.

Eine weitere Vereinfachung kann durch die Nutzung unterschiedlicher Modelle für den statischen und den dynamischen Betrieb erreicht werden. Erstere dienen zur gleichstrommäßigen Dimensionierung, und damit vor allem zur Berechnung der korrekten Arbeitspunkteinstellung, sowie für niederfrequente Logikschaltungen (z. B. TTL). Modelle für den dynamischen Betrieb dienen der wechselstrommäßigen Dimensionierung und damit zur Berechnung von Schaltungen für die Signalübertragung und Signalverarbeitung.

Der vorliegende Artikel beschäftigt sich ausschließlich mit der Modellierung des Bipolartransistors, für Informationen über den Aufbau und die Verwendung von Bipolartransistoren wird auf den Hauptartikel verwiesen.

Formelzeichen[Bearbeiten]

Im Folgenden werden die hier verwendeten Formelzeichen aufgelistet. Für weitere Formelzeichen siehe auch die mathematische Beschreibung.

Zeichen Beschreibung
I_{B,N} Idealer Basisstrom der Emitter-Diode
I_{B,I} Idealer Basisstrom der Kollektor-Diode
I_{B,E} Basis-Leckstrom der Emitter-Diode
I_{B,C} Basis-Leckstrom der Kollektor-Diode
I_T Kollektor-Emitter-Transportstrom
I_{D,S} Strom der Substrat-Diode

R_B Basiswiderstand
R_C Kollektorbahnwiderstand
R_E Emitterwiderstand

C_{S,E} Sperrschichtkapazität der Emitter-Diode
C_{S,Ci} Interne Sperrschichtkapazität der Kollektor-Diode
C_{S,Ce} Externe Sperrschichtkapazität der Kollektor-Diode
C_{S,S} Sperrschichtkapazität der Substrat-Diode
C_{D,N} Diffusionskapazität der Emitter-Diode
C_{D,I} Diffusionskapazität der Kollektor-Diode

Formelzeichen für das statische und dynamische Verhalten[Bearbeiten]

Formelzeichen für das statische Verhalten
Zeichen Beschreibung
I_S Sättigungssperrstrom
I_{S,S} Sättigungssperrstrom der Substrat-Diode
B_N Ideale Stromverstärkung im Normalbetrieb
B_I Ideale Stromverstärkung im Inversbetrieb

I_{S,E} Leck-Sättigungssperrstrom der Emitter-Diode
I_{S,C} Leck-Sättigungssperrstrom der Kollektor-Diode
n_E Emissionskoeffizient der Emitter-Diode
n_C Emissionskoeffizient der Kollektor-Diode

I_{K,N} Kniestrom zur starken Injektion im Normalbetrieb
I_{K,I} Kniestrom zur starken Injektion im Inversbetrieb

U_{A,N} Early-Spannung im Normalbetrieb
U_{A,I} Early-Spannung im Inversbetrieb

R_{Be} Externer Bahnwiderstand
R_{Bi} Interner Bahnwiderstand1)
1) wird in PSpice aus der Gleichung R_B = R_{Be} + R_{Bi} berechnet.
Formelzeichen für das dynamische Verhalten
Zeichen Beschreibung
C_{S0,E} Null-Kapazität der Emitter-Diode
C_{S0,C} Null-Kapazität der Kollektor-Diode
C_{S0,S} Null-Kapazität der Substrat-Diode
U_{{\rm diff},E} Diffusionsspannung der Emitter-Diode
U_{{\rm diff},C} Diffusionsspannung der Kollektor-Diode
U_{{\rm diff},S} Diffusionsspannung der Substrat-Diode
m_{S,E} Kapazitätskoeffizient der Emitter-Diode
m_{S,C} Kapazitätskoeffizient der Kollektor-Diode
m_{S,S} Kapazitätskoeffizient der Substrat-Diode

x_{CSC} Aufteilungskoeffizient der Kapazität in der Kollektor-Diode
f_S Koeffizient für den Kapazitätsverlauf

\tau_{0,N} Ideale Transitzeit im Normalbetrieb
\tau_{0,I} Ideale Transitzeit im Inversbetrieb
x_{\tau,N} Transitzeitkoeffizient im Normalbetrieb
x_{\tau,I} Transitzeitkoeffizient im Inversbetrieb
U_{\tau,N} Transitzeitspannung im Normalbetrieb
U_{\tau,I} Transitzeitspannung im Inversbetrieb
I_{\tau,N} Transitzeitstrom im Normalbetrieb
I_{\tau,I} Transitzeitstrom im Inversbetrieb

Weitere Formelzeichen[Bearbeiten]

Formelzeichen für das thermische Verhalten
Zeichen Beschreibung
x_{T,I} Temperaturkoeffizient der Sperrströme
x_{T.B} Temperaturkoeffizient der Stromverstärkung

Englische Bezeichnung[Bearbeiten]

Da Datenblätter meist in englisch verfasst sind, muss man auch die verwendeten Formelzeichen übersetzen können. Im Wesentlichen sind dies:

Deutsch Englisch
Bezeichnung Zeichen Bezeichnung Zeichen
Spannung U voltage V
Normalbetrieb N forward region F
Inversbetrieb I reverse region R
Sperrschicht S junction J

Die anderen Bezeichnungen können beibehalten werden.

Modelle für das statische Verhalten[Bearbeiten]

Ebers-Moll-Modell[Bearbeiten]

Ebers-Moll-Modell eines npn-Transistors

Das Ebers-Moll-Modell (nach John Lewis Moll und Jewell James Ebers, 1954) ist das einfachste Modell für den Bipolartransistor. Es hat nur drei Parameter und beschreibt damit die wichtigsten Effekte. Das Ebers-Moll-Modell wird mit Hilfe eines Dioden-Ersatzschaltbildes dargestellt.

Ein npn-Transistor besteht aus zwei antiseriellen pn-Übergängen (Dioden) mit gemeinsamer p-Zone. Diese Übergänge werden als Emitter-Diode (Basis-Emitter-Diode; BE-Diode) und Kollektor-Diode (Basis-Kollektor-Diode; BC-Diode) bezeichnet. Durch die dünne Basis (p-Zone) im Bipolartransistor fließt der Großteil des Stromes über den Emitter ab. Daher besteht das Ebers-Moll-Modell zusätzlich zu den beiden Dioden aus zwei Stromquellen, die den Stromfluss durch die Basis beschreiben. Für den pnp-Transistor werden einfach die Vorzeichen umgedreht.

Zusätzlich wird noch ein Steuerfaktor für den Normalbetrieb A_N \approx 0{,}98 \dots 0{,}998 sowie den Inversbetrieb A_I \approx 0{,}5 \dots 0{,}9 verwendet, um den unsymmetrischen Aufbau eines realen npn-Transistors zu berücksichtigen.

I_{D,N} = I_{S,N} \, \left( e^{\frac{U_{BE}}{U_T} } - 1 \right)
I_{D,I} = I_{S,I} \, \left( e^{\frac{U_{BC}}{U_T} } - 1 \right)
I_C = A_N \, I_{S,N} \, \left( e^\frac{U_{BE}}{U_T} - 1 \right) - I_{S,I} \, \left( e^\frac{U_{BC}}{U_T} -1 \right)
I_E = - I_{S,N} \, \left( e^\frac{U_{BE}}{U_T} - 1 \right) + A_I \, I_{S,I} \, \left( e^\frac{U_{BC}}{U_T} - 1 \right)
I_B = \left( 1 - A_N \right) \, I_{S,N} \, \left( e^\frac{U_{BE}}{U_T} - 1 \right) + \left( 1 - A_I \right) \, I_{S,I} \, \left( e^\frac{U_{BC}}{U_T} - 1 \right)

Im Normalbetrieb sperrt die BC-Diode da U_{BC} < 0 und kann deshalb vernachlässigt werden. Zusätzlich kann die zugehörige Exponentialfunktion durch -1 ersetzt werden, da U_{BE} \gg U_T ist. Umgekehrt sperrt im Inversbetrieb die BE-Diode, wodurch man auch in diesem Fall eine Vereinfachung der Gleichung auf dieselbe Weise erhält.

Reduzierte Ebers-Moll-Modelle für den npn-Transistor
Normalbetrieb Inversbetrieb
Ebers-Moll-Model (reduced, forward region).svg Ebers-Moll-Model (reduced, inverse region).svg

I_C = I_S \, e^\frac{U_{BE}}{U_T}
I_E = - \frac{1}{A_N} \, I_S \, e^\frac{U_{BE}}{U_T}
I_B = - \frac{1 - A_N}{A_N} \, I_S \, e^\frac{U_{BE}}{U_T} = \frac{1}{B_N} \, I_S \, e^\frac{U_{BE}}{U_T}

mit

A_N = - \frac{I_C}{I_E} \approx 0{,}98 \dots 0{,}998
B_N = \frac{A_N}{1 - A_N} = - \frac{I_C}{I_B} \approx 50 \dots 500

I_C = I_S \, e^\frac{U_{BC}}{U_T}
I_E = - \frac{1}{A_I} \, I_S \, e^\frac{U_{BC}}{U_T}
I_B = - \frac{1 - A_I}{A_I} \, I_S \, e^\frac{U_{BC}}{U_T} = \frac{1}{B_I} \, I_S \, e^\frac{U_{BC}}{U_T}

mit

A_I = - \frac{I_E}{I_C} \approx 0{,}5\dots 0{,}9
B_I = \frac{A_I}{1 - A_I} = - \frac{I_E}{I_B} \approx 1 \dots 10

Ebers-Moll-Modell im Sättigungsbetrieb[Bearbeiten]

Wenn man den Bipolartransistor als Schalter einsetzt, kommt dieser vom Normalbetrieb in den Sättigungsbetrieb. Hierbei ist vor allem die minimal erreichbare Kollektor-Emitter-Spannung U_{CE,sat}(I_B,\,I_C) interessant. Aufgelöst für diese Spannung erhält man die Gleichung

U_{CE,sat}(I_B,\,I_C) = U_T \, \ln\frac{B_N \, \left( 1 + B_I \right) \, \left( B_I \, I_B + I_C \right)}{ B_I^2 \, \left( B_N \, I_B - I_C \right) }

Bei 0 < I_C < B_N\, I_B gilt U_{CE,sat} \approx 20 \dots 200 \,\mathrm{mV}. Das Minimum erhält man bei I_C=0:

U_{CE,sat} \left( I_C = 0 \right) = U_T \, \ln \left( 1 + \frac{1}{B_I} \right) = - U_T \, \ln A_I

Für den Inversbetrieb vertauscht man Emitter und Kollektor. Dadurch erhält man für die Sättigung mit I_E = 0:

U_{EC,sat} \left( I_E = 0 \right) = U_T \, \ln \left( 1 + \frac{1}{B_N} \right) = - U_T \, \ln A_N

Da A_I < A_N < 1 gilt U_{EC,sat}(I_E = 0) < U_{CE,sat}(I_C = 0). Dabei gilt üblicherweise U_{CE,sat}(I_C = 0) \approx 2\dots 20\,\mathrm{mV} und U_{EC,sat}(I_E = 0) \approx 0{,}05 \dots 0{,}5\,\mathrm{mV}.

Transportmodell[Bearbeiten]

Transportmodell eines npn-Transistors

Durch die Umformung der beiden Stromquellen des Ebers-Moll-Modells in eine einzige gesteuerte Stromquelle erhält man das Transportmodell des Bipolartransistors. Das Transportmodell beschreibt das Gleichstromverhalten. Emitter und Kollektor-Diode werden dabei als ideal angenommen und der durch die Basis fließende Strom wird als Transportstrom I_T getrennt berechnet. Für das Transportmodell gelten die folgenden Gleichungen:

I_{B,N} = \frac{I_S}{B_N}\, \left( e^\frac{U_{BE}}{U_T} - 1 \right)
I_{B,I} = \frac{I_S}{B_I}\, \left( e^\frac{U_{BC}}{U_T} - 1 \right)
I_B = I_{B,N} + I_{B,I} = \frac{I_S}{B_N}\, \left( e^\frac{U_{BE}}{U_T} - 1 \right) + \frac{I_S}{B_I}\, \left( e^\frac{U_{BC}}{U_T} - 1 \right)
I_T = B_N \, I_{B,N} - B_I \, I_{B,I} = I_S \, \left( e^\frac{U_{BE}}{U_T} - e^\frac{U_{BC}}{U_T} \right)
I_C = I_S \, \left[ e^\frac{U_{BE}}{U_T} - \left( 1 + \frac{1}{B_I} \right) \, e^\frac{U_{BC}}{U_T} + \frac{1}{B_I} \right]
I_E = I_S \, \left[ e^\frac{U_{BC}}{U_T} - \left( 1 + \frac{1}{B_N} \right) \, e^\frac{U_{BE}}{U_T} + \frac{1}{B_N} \right]
Vereinfachtes Transportmodell für den Normalbetrieb eines npn-Transistors

Da für den Normalbetrieb die Sperrströme vernachlässigt werden können, erhält man das reduzierte Transportmodell mit:

I_C = B_N \, I_B = I_S \, e^\frac{U_{BE}}{U_T}
I_B = \frac{I_C}{B_N} = \frac{I_S}{B_N} \, e^\frac{U_{BE}}{U_T}
I_E = - \left( I_C + I_B \right) = - \left( 1 + B_N \right) \, I_B


Modellierung statischer Effekte im Transportmodell[Bearbeiten]

Erweitertes Transportmodell eines npn-Transistors

Um das statische Verhalten des Bipolartransistors besser modellieren zu können, muss das Transportmodell entsprechend erweitert werden. Hierbei sind vor allem die folgenden Effekte zu berücksichtigen:

Für das um diese Effekte erweiterte Transportmodell gelten im Allgemeinen die Zusammenhänge:

I_B = I_{B,N} + I_{B,I} + I_{B,E} + I_{B,C}
I_C = \frac{B_N}{q_B} \, I_{B,N} - \left( \frac{B_I}{q_B} + 1 \right) \, I_{B,I} - I_{B,C}
I_E = - \left( \frac{B_N}{q_B} + 1 \right) \, I_B,N + \frac{B_I}{q_B} \, I_{B,I} - I_{BE}

was sich aus den im Weiteren erläuterten Formeln ergibt.

Leckströme[Bearbeiten]

Die Leckströme, die durch die Ladungsträgerrekombination in den pn-Übergängen erzeugt wird werden zu den jeweiligen Strömen der Kollektor- und der Emitter-Diode hinzuaddiert. Dies wird erreicht, indem man den Dioden im Transportmodell jeweils eine weitere Diode parallelschaltet. Diese zusätzlichen Dioden werden über die Leck-Sättigungs-Sperrströme I_{S,E} und I_{S,C}, sowie über die Emissionskoeffizienten n_E \approx 1,5 und n_C \approx 2 beschrieben.

I_{B,E} = I_{S,E} \, \left( e^\frac{U_{BE}}{n_E \, U_T} - 1 \right)
I_{B,C} = I_{S,C} \, \left( e^\frac{U_{BC}}{n_C \, U_T} - 1 \right)
Hochstrom- und Early-Effekt[Bearbeiten]

Wenn der Strom durch den Transistor sehr stark ist, ist der Transportstrom eines realen Transistors durch die hohe Ladungsträgerkonzentration in der Basis kleiner als durch das Grundmodell dargestellt. Dieser Effekt wird auch als Hochstromeffekt bzw. als starke Injektion bezeichnet.

Zusätzlich beeinflussen die Spannungen U_{BE} und U_{BC} die effektive Dicke der Basiszone und wirken sich somit auf den Transportstrom I_T aus. Dieser Effekt ist als Early-Effekt bekannt.

Der Hochstrom- und der Early-Effekt wird durch die dimensionslose Größe q_B dargestellt.

I_T = \frac{B_N \, I_{B,N} - B_I \, I_{B,I}}{q_B} = \frac{I_S}{q_B} \, \left( e^\frac{U_{BE}}{U_T} - e^\frac{U_{BC}}{U_T} \right)

q_B ist hierbei die relative Majoritätsträgerladung und setzt sich aus der Größe des Early-Effekts q_{\rm Early} und der Größe des Hochstromeffektes q_{\rm Hoch} zusammen:

q_B = \frac{q_{\rm Early}}{2} \, \left( 1 + \sqrt{1 + 4\, q_{\rm Hoch}} \right)
q_{\rm Early} = \frac{1}{1 - \frac{U_{BE}}{U_{A,I}} - \frac{U_{BC}}{U_{A,N}}}
q_{\rm Hoch} = \frac{I_S}{I_{K,N}} \left( e^\frac{U_{BE}}{U_T} - 1 \right) + \frac{I_S}{I_{K,I}} \left( e^\frac{U_{BC}}{U_T} - 1 \right)

Hierbei sind U_{A,N} und U_{A,I} die Early-Spannungen mit U_A \approx 30 \dots 150 \, \mathrm{V}. I_{K,N} und I_{K,I} sind die Knieströme der starken Injektion. Die Größe der Knieströme ist von der Größe und damit der Bauform des Transistors abhängig und liegen im Milliampere- (Kleinleistungtransitor) bis Amperebereich (Leistungstransistor).

Hochstrom- und Early-Effekt im Normalbetrieb[Bearbeiten]
Gummel-Plot mit UCE = konst.

Bei der Betrachtung des Kollektorstromes kommt die Auswirkung des Faktors q_B besonders zur Geltung. Unter Vernachlässigung der Sperrströme erhält man:

I_C = \frac{B_N \, I_{B,N}}{q_B} = \frac{I_S \, e^\frac{U_{BE}}{U_T}}{q_B}

Bei kleinen bis mittleren Stromgrößen I_C < I_{K,N} gilt q_{\rm Hoch} \ll 1 und somit q_B \approx q_{Early}. Zusätzlich gilt

U_{BC} = U_{BE} - U_{CS} \approx -U_{CE}

da U_{BE} \approx 0{,}6 \dots 0{,}8 \, \mathrm{V}. Somit erhält man eine Näherungsgleichung für den Early-Effekt:

q_{\rm Early} \approx \frac{1}{1+ \frac{U_{CE}}{U_{A,N}}}

und durch Einsetzen in I_C erhält man:

I_C \approx I_S \, e^\frac{U_{BE}}{U_T} \, \left( 1 + \frac{U_{CE}}{U_{A,N}} \right)

Bei großen Strömen I_C \to \infin ist q_{\rm Hoch} \gg 1 und somit q_B \approx q_{\rm Early} \, \sqrt{q_{\rm Hoch}}. Durch Einsetzen erhält man:

I_C \approx \sqrt{I_S \, I_{K,N}} \, e^\frac{U_{BE}}{2\, U_T} \, \left( 1 + \frac{U_{CE}}{U_{A,N}} \right)

Unter Vernachlässigung der Sperrströme erhält man für I_B die Gleichung

I_B = \frac{I_S}{B_N} \, e^\frac{U_{BE}}{U_T} + I_{S,E}\, e^\frac{U_{BE}}{n_E \, U_T}
Stromverstärkung[Bearbeiten]

Für die Stromverstärkung B gilt der Zusammenhang

B = \frac{I_C}{I_B} = \frac{B_N}{q_B + B_N \, \left( \frac{q_B}{I_S} \right)^\frac{1}{n_E} \, I_{S,E} \, I_C^{\frac{1}{n_E}-1}}

Zudem ist die Stromverstärkung B von UBE und UCE abhängig, da auch IC und qB von diesen Spannungen abhängig sind.

Der Verlauf der Stromverstärkung wird zur Näherung in drei Abschnitte unterteilt:

1. Leckstrombereich
Bei kleinen Kollektorströmen dominiert der Leckstromanteil IB,E im Basisstrom IB. Dieser Bereich wird folglich als Leckstrombereich bezeichnet. In diesem Bereich gilt aufgrund der Dominanz des Leckstromes die Näherung I_B \approx I_{B,E} und q_B \approx q_1. Daraus ergibt sich die Vereinfachung:
B \approx \frac{I_C^{1-\frac{1}{n_E}}}{I_{S,E} \, \left( \frac{q_1}{I_S} \right)^\frac{1}{n_E}} \sim I_C^{1-\frac{1}{n_E}} \left( 1 + \frac{U_{CE}}{U_{A,N}} \right)^\frac{1}{n_E}
Mit n_E \approx 1{,}5 erhält man B \sim I_C^\frac{1}{3}. Damit ist die Verstärkung B in diesem Bereich kleiner als bei mittelgroßen Kollektorströmen und wird mit steigendem Kollektorstrom I_C ebenfalls größer.
2. Normalbereich
Bei mittleren Kollektorströmen gilt die Näherung I_B \approx I_{B,N} und daraus folgend:
B \approx B_N \, \left( 1 + \frac{U_{CE}}{U_{A,N}} \right)
Daraus ergibt sich ein maximaler Wert, sowie nur eine geringe Abhängigkeit von I_C, für die Verstärkung B in diesem Bereich. Deshalb werden Transistoren bevorzugt in diesem Bereich betrieben.
3. Hochstrombereich
Bei großen Kollektorströmen kommt es zum Hochstromeffekt. Über den Zusammenhang I_B \approx I_{B,N} erhält man den Zusammenhang:
B \approx \frac{B_N}{q_B} \approx B_N \, \frac{I_{K,N}}{I_C} \, \left( 1 + \frac{U_{CE}}{U_{A,N}} \right)^2
Die Stromverstärkung B ist somit indirekt proportional zu IC, was bedeutet, dass die Stromverstärkung mit steigendem Kollektorstrom stark abnimmt.
Abhängigkeit der Verstärkung B vom Kollektorstrom IC in doppellogarithmischer Darstellung bei konstanter Kollektor-Emitter-Spannung UCE

Die maximale Stromverstärkung bei konstanter Kollektor-Emitter-Spannung wird mit Bmax(UCE) bezeichnet. Für Transistoren mit großem Kniestrom IK,N und kleinem Leckstrom IS,E ist der Normalbereich so breit, dass der tatsächliche Verlauf von B mit der Näherungsgeraden in diesem Bereich eine Tangente bildet. Im Schnittpunkt gilt Bmax(UCE) = B0,max = BN, wobei B0,max bei UCE = 0 auftritt. Bei Transistoren mit kleinem Kniestrom und großem Leckstrom hingegen fällt der Normalbereich sehr schmal aus, wobei die Verstärkung unterhalb der Näherungsgeraden bleibt und damit B < BN gilt.

Bahnwiderstände[Bearbeiten]
Um Bahnwiderstände erweitertes Transportmodell
Lage der Bahnwiderstände im Halbleiter des Bipolartransistors

Da das Halbleitermaterial für den elektrischen Strom einen Widerstand darstellt, muss dieser Widerstand in Form der Bahnwiderstände dargestellt werden. Man unterscheidet zwischen dem Emitterbahnwiderstand RE, dem Kollektorbahnwiderstand RC und dem Basisbahnwiderstand RB.

Emitterbahnwiderstand
Aufgrund der starken Dotierung und des geringen Längen-zu-Querschnitt-Verhältnisses des Emitters hat RE nur einen kleinen Betrag. Bei Kleinleistungstransistoren beträgt RE etwa 0,1 Ω bis 1 Ω und bei Leistungstransistoren etwa 0,01 Ω bis 0,1 Ω.
Kollektorbahnwiderstand
Der Kollektorbahnwiderstand wird vor allem durch die schwach dotierte Kollektorzone verursacht. Bei Kleinleistungstransistoren beträgt RC etwa 1 Ω bis 10 Ω und bei Leistungstransistoren etwa 0,1 Ω bis 1 Ω.
Basiswiderstand
Der Basiswiderstand wird aus dem externen Basiswiderstand RBe und dem internen Basiswiderstand RBi gebildet. Der externe Basiswiderstand tritt hierbei zwischen dem Kontakt der Basis und der aktiven Basiszone auf, während der interne Basiswiderstand quer in der aktiven Basiszone zwischen Emitter und Kollektor auftritt. Bei großen Strömen hat der interne Basiswiderstand nur begrenzt Einfluss, da sich der Strom aufgrund der Stromverdrängung an der Basiszone konzentriert. Zusätzlich wirkt der Early-Effekt, der die Dicke der Basiszone beeinflusst. Diese Effekte werden in der Konstante qB zusammengefasst.
Der Basiswiderstand ergibt sich folglich aus:
R_B = R_{Be} + \frac{R_{Bi}}{q_B}
Für den Normalbetrieb folgt durch Auflösen von qB:
R_{B} = \begin{cases} R_{Be} + R_{Bi} \, \left( 1 + \frac{U_{CE}}{U_{A,N}} \right) & {\rm wenn} \quad I_{C} < I_{K,N} \\ R_{Be} & {\rm wenn} \quad I_{C} \to \infty \end{cases}
Bei Kleinleistungstransistoren beträgt RBe etwa 10 Ω bis 100 Ω und bei Leistungstransistoren etwa 1 Ω bis 10 Ω. RBi ist hierbei etwa drei- bis viermal so groß wie RBe.
Substrat-Diode[Bearbeiten]
Lateraler integrierter pnp-Transistor
Vertikaler integrierter npn-Transistor

Bei integrierten Transistoren ist bei vertikalen npn-Transistoren zwischen Substrat und Kollektor, sowie bei lateralen pnp-Transistoren zwischen Substrat und Basis, konstruktionsbedingt—wie in den nebenstehenden Abbildungen dargestellt—ein pn-Übergang: die sog. Substrat-Diode. Diese Substrat-Diode wird als herkömmliche pn-Diode über die Shockley-Formel beschrieben. Hierbei wird für den Sättigungssperrstrom IS der Sättigungssperrstrom der Substratdiode IS,S eingesetzt:

I_{D,S} = I_{S,S} \left( e^\frac{U_{SB}}{U_T} - 1 \right) (lateral)
I_{D,S} = I_{S,S} \left( e^\frac{U_{SC}}{U_T} - 1 \right) (vertikal)

Da die Substrat-Diode üblicherweise nicht beschaltet wird, ist keine Modellierung erforderlich. Bei (fehlerhafter) Beschaltung kann jedoch ein Strom fließen und muss in diesem Fall auch berücksichtigt werden.

Modellierung dynamischer Effekte im Transportmodell[Bearbeiten]

Bei der Ansteuerung mit sinus- oder pulsförmigen Signalen muss auch das dynamische Verhalten des Transistors beachtet werden. Hierzu benötigt man, wie bei der Diode, die im Transistor auftretenden Sperr- und Diffusionskapazitäten.

Sperrschichtkapazitäten[Bearbeiten]

Bei einem einzelnen Bipolartransistor treten zwei und bei integrierten Transistoren drei Sperrschichtkapazitäten auf. Die Emitterdiode ist hierbei durch die Emittersperrschichtkapazität C_{S,E} \left( U_{B',E'} \right) charakterisiert. Die Kollektordiode wird durch die Kollektorsperrschichtkapazität C_{C,E} beschrieben, welche sich aus der internen Sperrschichtkapazität C_{S,Ci} der aktiven Zone bei B' und der externen Sperrschichtkapazität C_{S,Ce} beim Basisanschluss B zusammen. Die Anteile der internen und externen Sperrschichtkapazität an der Kollektorsperrschichtkapazität wird durch den Parameter x_{CSC} dargestellt:

\begin{align}
C_{S,C} &= C_{S,Ci} + C_{S,Ce}\\
C_{S,Ci} \left( U_{B'C'} \right) &= x_{CSC} \cdot C_{S,C} \left( U_{B'C'} \right)\\
C_{S,Ce} \left( U_{B'C'} \right) &= \left( 1 - x_{CSC} \right) \cdot C_{S,C} \left( U_{B'C'} \right)\end{align}

Bei Einzeltransistoren liegt der Faktor x_{CSC} meistens zwischen 0,5 und 1, was bedeutet, dass C_{S,Ce} \le C_{S,Ci} ist. Bei integrierten Transistoren ist x_{CSC} < 0,5 und damit C_{S,Ce} > C_{S,Ci}.

Bei integrierten Transistoren tritt zusätzlich die Sperrschichtkapazität der Substratdiode C_{S,S} auf. Diese wirkt bei integrierten vertikalen npn-Transistoren am internen Kollektor C' und bei integrierten lateralen npn-Transistoren an der internen Basis B'. Daher gilt:

\begin{align}
C_{S,S} &= C_{S,S} \left( U_{SC'} \right) \qquad\text{(vertikal)} \\
C_{S,S} &= C_{S,S} \left( U_{SB'} \right) \qquad\text{(lateral)}
\end{align}
Diffusionskapazitäten[Bearbeiten]

Beim Transistor treten zwei Diffusionskapazitäten auf: die Diffusionskapazität der Emitterdiode C_{D,N} und die Diffusionskapazität der Kollektordiode C_{D,I}. In diesen werden die Emitterdiffusionsladung Q_{D,N} und die Kollektordiffusionsladung Q_{D,I} gespeichert. Die Diffusionsladungen ergeben sich aus dem Transportstrom I_T, welcher vom Kollektor zum Emitter fließt (siehe auch: Transportmodell).

Q_{D,N} = \tau_N \, B_N \, I_{B,N} = \tau_N \, I_S \, \left( e^\frac{U_{B'E'}}{U_T} - 1 \right)
Q_{D,I} = \tau_N \, B_I \, I_{B,I} = \tau_I \, I_S \left( e^\frac{U_{B'C'}}{U_T} - 1 \right)

Wobei die Zeitkonstanten \tau_N und \tau_I als Transit-Zeit bezeichnet werden. Durch Differentiation ergeben sich aus diesen Gleichungen die Diffusionskapazitäten:

C_{D,N} \left( U_{B'E'} \right) = \frac{\mathrm{d} \, Q_{D,N}}{\mathrm{d} \, U_{B',E'}} = \frac{\tau_N \, I_S}{U_T} \, e^\frac{U_{B',E'}}{U_T}
C_{D,I} \left( U_{B'C'} \right) = \frac{\mathrm{d} \, Q_{D,I}}{\mathrm{d} \, U_{B',C'}} = \frac{\tau_N \, I_S}{U_T} \, e^\frac{U_{B',C'}}{U_T}

Die Diffusionskapazitäten C_{D,N} und C_{D,I} treten parallel zu den Sperrschichtkapazitäten C_{S,E} und C_{S,Ci} auf. Im Normalbetrieb ist die Kollektor-Diffusionskapazität C_{D,I} aufgrund der geringen inneren Basis-Kollektor-Spannung U_{B',C'} im Vergleich zur inneren Kollektor-Sperrschicht-Kapazität C_{S,Ci} sehr klein und kann daher vernachlässigt werden. C_{D,I} kann infolge der Vernachlässigung von C_{D,I} mit einer konstanten Transitzeit beschrieben werden, wodurch \tau_N = \tau_{0,I} angenommen wird.

Wenn der Transitstrom klein ist gilt C_{D,N} < C_{D,N}, bei großem Transitstrom hingegen gilt C_{D,N} > C_{D,N}. Um dies korrekt darstellen zu können muss \tau_N in der Ersatzschaltung genau modelliert werden. Eine Zunahme von \tau_N gei großen Strömen wirkt sich als Abnahme der Grenzfrequenzen und der Schaltgeschwindigkeit des Transistors aus.

Aufgrund des Hochstromeffektes nimmt die Diffusionsladung überproportional zu. Die Transitzeit ist daher nicht konstant und nimmt mit steigendem Strom zu. Der Early-Effekt wirkt sich ebenfalls aus, da dieser die effektive Dicke der der Basiszone und damit die in der Basiszone gespeicherte Ladung verändert. Da jedoch mit den Parametern I_{K,N} und U_{A,N} keine präzise Beschreibung möglich ist, wird eine empirisch bestimmte Gleichung zur Beschreibung verwendet:

Verlauf von \frac{\tau_N}{\tau_{0,N}} in doppellogarithmischer Darstellung
\tau_N = \tau_{0,N} \, \left[ 1 + x_{\tau,N} \, \left( 3\,x^2 - 2\,x^3 \right) \, 2^\frac{U_{B'C'}}{U_{\tau,N}} \right]

wobei der Faktor x für das Polynom über die folgende Gleichung definiert ist:

x = \frac{B_N \, I_{B,N}}{B_N \, I_{B,N} + I_{\tau,N}} = \frac{1}{1 + \frac{I_{\tau,N}}{B_N \, I_{B,N}}} = \frac{1}{1 + \frac{I_{\tau_N}}{I_S \, \left( e^{\frac{U_{B'E'}}{U_T}} - 1 \right)}}

Zusätzlich ist \tau_0,N die ideale Transitzeit, x_{\tau_N} der Koeffizient der Transitzeit, I_{K,N} der Transitzeit-Kniestrom und U_{\tau,N} die Transitzeit-Spannung. Der Koeffizient der Transitzeit x_{\tau_N} gibt hierbei an, wie stark \tau_N bei U_{B'C'} = 0\,\mathrm{V} zunehmen kann:

\lim_{I_{B,B} \to\infty} \tau_N = \tau_{0,N} \,\left( 1 + x_{\tau,N} \right) \quad\forall{U_{B'C'}=0\,\mathrm{V}}

Die Hälfte der maximalen Zunahme erhält man bei I_{\tau,N} = B_N\, I_{B,N}:

\tau_N = \tau_{0,N} \, \left( 1 + \frac{x_{\tau,N}}{2} \right) \quad\forall \left( B_N \, I_{B,N} = I_{\tau,N} \right) \land \left( U_{B'C'} = 0 \right)

Daraus folgt, dass wenn die Spannung U_{B'C'} um den Betrag der Spannung U_{\tau,N} sinkt, steigt \tau_N nur noch mit der halben Geschwindigkeit. d. h. für U_{B'C'} = - n\, U_{\tau,N} ist die Zunahme von \tau_N um den Faktor 2^n kleiner.

Statisches Kleinsignalmodell[Bearbeiten]

Das statische Kleinsignalmodell beschreibt das Kleinsignalverhalten bei niedrigen Frequenzen und wird deshalb auch als Gleichstrom-Kleinsignalersatzschaltbild bezeichnet.

Aus dem Gummel-Poon-Modell wird durch Linearisierung im Arbeitspunkt das lineare Kleinsignalmodell. Der Arbeitspunkt wird hierbei in einem Bereich gewählt, in dem der Transistor nach erfolgter Dimensionierung arbeiten soll. Üblicherweise ist dies der Normalbetrieb, weshalb im Weiteren Modelle für den Normalbetrieb gezeigt werden. Nach denselben Prinzipien kann man jedoch auch Modelle für die anderen Transistor-Betriebsarten erstellen.

Die Linearisierung des Gummel-Poon-Modells erfolgt, indem man die Kapazitäten weglässt – da diese bei Gleichstrom nicht wirken – und die Sperrströme vernachlässigt – also IB,I, IB,C und ID,S gleich Null setzt.

Statisches Kleinsignalmodell durch Vernachlässigung von Kapazitäten und Sperrströmen im Gummel-Poon-Modell
Statisches Kleinsignalmodell nach der Linearisierung von IB und IC

Weiters werden die nichtlinearen Größen I_B = I_{B,N}\left( U_{B'E'} \right) + I_{B,E} \left( U_{B'E'} \right) sowie I_C = I_T \left( U_{B'E'},U_{C'E'} \right) im Arbeitspunkt A linearisiert:

S = \frac{\part I_C}{\part U_{B'E'}} = \frac{I_{C,A}}{U_T} \, \left( 1 - \frac{U_T}{q_B} \, \frac{\part q_B}{\part U_{B'E'}} \right) \quad\forall{A}
\frac{1}{r_{BE}} = \frac{\part I_B}{\part U_{B'E'}} = \frac{I_S}{B_N \, U_T} \, e^\frac{U_{B'E',A}}{U_T} + \frac{I_{S,E}}{n_E \, U_T} \, \frac{U_{B'E',A}}{n_E\, U_T} \quad\forall{A}
\frac{1}{r_{CE}} = \frac{\part I_C}{\part U_{C'E'}} = \frac{I_{C,A}}{U_{A,N} + U_{C'E',A} - U_{B'E',A} \, \left( 1 + \frac{U_{A,N}}{U_{A,I}} \right)} \quad\forall{A}

In der Praxis werden zur weiteren Vereinfachung auch die Bahnwiderstände nicht berücksichtigt. Daraus erhält man das vereinfachte statische Kleinsignalmodell. Bei einer zusätzlichen Vernachlässigung des Early-Effektes durch r_{CE} \to \infty erhält man des Weiteren eine alternative Darstellungsart dieses vereinfachten Modells, welche durch Linearisierung aus dem vereinfachten statischen Kleinsignalmodell erstellt wird. Die alternative Darstellungsart ist aufgrund des vernachlässigten Early-Effekts jedoch nur Ausnahmefällen brauchbar, da die Berechnung anhand dieser Vereinfachung meist zu unbrauchbaren Ergebnissen führt. In der Literatur findet man zudem oft eine Darstellung mit einem zusätzlichen Widerstand zwischen Basis und Kollektor, der sich durch die Linearisierung der Kollektor-Basis-Diode aus dem Ebers-Moll-Modell ergibt, jedoch nicht zur Modellierung des Early-Effekts dient.

Vereinfachtes statisches Kleinsignalmodell mit vernachlässigten Bahnwiderständen
Umgeformtes vereinfachtes statisches Kleinsignalmodell unter zusätzlicher Vernachlässigung des Early-Effekts

Hierbei gelten die Gleichungen

r_E = \frac{1}{S + \frac{1}{r_{BE}}} \approx \frac{1}{S}
\alpha = \frac{\beta}{1+\beta} = S \, r_{E}

Modelle für das dynamische Verhalten[Bearbeiten]

Gummel-Poon-Modell[Bearbeiten]

Das Gummel-Poon-Modell, benannt nach seinen geistigen Vätern Hermann Gummel und H. C. Poon, ist das vollständige Modell eines Bipolar-Transistors und wird zur Schaltungssimulation – etwa in PSpice – verwendet. Es basiert auf dem Transportmodell und modelliert alle statischen und dynamischen Effekte in diesem. Die Formelzeichen sind zu Beginn des Artikels aufgelistet.

Gummel-Poon-Modell eines npn-Bipolartransistors

Falls einige Werte im Datenblatt des Transistors nicht angegeben sind, werden (z. B. in PSpice) Standardwerte verwendet. In PSpice werden hierbei die folgenden Standardwerte verwendet:

Standardwerte des Gummel-Poon-Modell in PSpice
Parameter IS BN BI nE nC xT,I fS Udiff,E, Udiff,C, Udiff,S mS,E, mS,C xCSC IS,S, IS,E, IS,C,
RB, RC, RE,
CS0,E, CS0,C, CS0,S,
τ0,N, τ0,I, xτ,N, xT,B,
mS,S, Iτ,N
IK,N, IK,I,
UA,N, UA,I, Uτ,N
Standardwert 10−16 A 100 1 1,5 2 3 0,5 0,75 V 333·10−3 1 0

Hierbei bedeutet ein Standardwert von 0 oder ∞, dass der entsprechende Parameter so gesetzt wird, dass dieser Parameter keinen Einfluss auf die Berechnung hat und auf diese Weise nicht modelliert wird.

Werte für das Gummel-Poon-Modell ausgewählter Einzeltransistoren
Parameter PSpice-
Bezeichnung
BC547B [1] BC557B [2] BUV47 [3] BFR92P [4]
IS IS 7 fA 1 fA 974 fA 0,12 fA
BN BF 375 307 95 95
BI BR 1[F 1] 6,5 20,9 10,7
IS,E ISE 68 fA 10,7 fA 2,57 pA 130 fA
nE NE 1,58 1,76 1,2 1,9
IK,N IKF 82 mA 92 mA 15,7 A 160 mA
UA,N VAF 63 V 52 V 100 V 30 V
RBe RBM 10 Ω[F 2] 10 Ω[F 2] 100 mΩ[F 2] 6,2 Ω
RBi[F 3] 0[F 2] 0[F 2] 0[F 2] 7,8 Ω
RB[F 3] 10 Ω[F 2] 10 Ω[F 2] 100 mΩ[F 2] 15 Ω
RC RC 1 Ω 1,1 Ω 35 mΩ 140 mΩ
CS0,E CJE 11,5 pF 30 pF 1,093 nF 1 fF
Udiff,E VJE 500 mV 500 mV 500 mV 710 mV
mS,E MJE 672·10−3 333·10−3 [F 1] 333·10−3 [F 1] 347·10−3
CS0,C CJC 5,25 pF 9,8 pF 364 pF 649 fF
Udiff,C VJC 570 mV 490 mV 500 mV 850 mV
mS,C MJC 315·10−3 332·10−3 333·10−3 [F 1] 401·10−3
xCSC XCJC 1[F 1] 1[F 1] 1[F 1] 130·10−3
fS FC 500·10−3 [F 1] 500·10−3 [F 1] 500·10−3 [F 1] 500·10−3 [F 1]
τ0,N TF 410 ps 612 ps 51,5 ns 27 ps
xτ,N XTF 40 26 205 380·10−3
Uτ,N VTF 10 V 10 V 10 V 330 mV
Iτ,N ITF 1,49 A 1,37 A 100 A 4 mA
τ0,I TR 10 ns 10 ns 988 ns 1,27 ns
xT,I XTI 3[F 1] 3[F 1] 3[F 1] 3[F 1]
xT,B XTB 1,5 1,5 1,5 1,5
Anmerkungen:
  1. a b c d e f g h i j k l m n o entspricht dem Standardwert
  2. a b c d e f g h i Wert nur allgemein angegeben. Bei hohen Frequenzen kommt es zu Ungenauigkeiten.
    Dies wird im Transistorrauschen berücksichtigt. Andernfalls müsste der korrekte Wert durch Messung am einzelnen Bauteil ermittelt werden.
  3. a b RBi wird in PSpice nicht explizit angegeben. Stattdessen wird RB mit RB = RBM + RBi = RBe + RBi angegeben.

Zudem werden in PSpice einige weitere Effekte berücksichtigt, die im PSpice-Referenzhandbuch [5] beschrieben werden, wofür das in PSpice verwendete Modell entsprechend erweitert wurde.

Dynamisches Kleinsignalmodell[Bearbeiten]

Dynamisches Kleinsignalmodell des Bipolartransistors

Wenn man das vollständige statische Kleinsignalmodell um die Sperrschicht- und Diffusionskapazitäten erweitert, erhält man das dynamische Kleinsignalmodell.

Die Emitterkapazität C_E setzt sich aus der Emitter-Sperrschicht-Kapazität C_S,E und der Diffusionskapazität für den Normalbetrieb C_{D,N} zusammen:

\begin{align}
 C_E = &\, C_{S,E} \left( U_{B'E',A} \right)\\
 &+ C_{D,N} \left( U_{B'E',A} \right)
\end{align}

Die interne Kollektorkapazität C_{Ci} entspricht der internen Kollektor-Sperrschicht-Kapazität, da die interne Diffusionskapazität C_{D,I} wegen U_{BC} \le 0 vernachlässigbar klein ist:

\begin{align}
C_{Ci} &= C_{S,Ci} \left( U_{B'C',A} \right) + C_{D,I} \left( U_{B'C',A} \right) \\
 &\approx C_{S,Ci} \left( U_{B'C',A} \right)
\end{align}

Die externe Kollektorkapazität C_{Ce} und die Substratkapazität C_S entsprechen den jeweiligen Sperrschichtkapazitäten, wobei die Substratkapazität naturgemäß nur bei integrierten Transistoren zu finden ist:

Vereinfachtes dynamisches Kleinsignalmodell des Bipolartransistors
\begin{align}
C_{Ce} &= C_{S,Ce} \left( U_{BC',A} \right)\\
C_S &= C_{S,C} \left( U_{SC',A} \right)
\end{align}

In der Praxis werden der Emitterwiderstand R_E und der Kollektorwiderstand R_C meist vernachlässigt, während der Basiswiderstand R_B nur in Ausnahmefällen vernachlässigt werden kann, da der Basiswiderstand einen starken Einfluss auf das dynamische Verhalten hat. Zudem wird in der Praxis die interne und externe Kollektorkapazität – ausgenommen bei integrierten Transistoren mit einer überwiegend externen Kollektorkapazität – als interne Kollektorkapazität C_C zusammengefasst. Hieraus erhält man das vereinfachte dynamische Kleinsignalmodell:

Grenzfrequenz im Kleinsignalbetrieb[Bearbeiten]

Mit Hilfe des Kleinsignalmodells kann man die Frequenzgänge der Kleinsignalstromverstärkungen \alpha und \beta, sowie der Transmittanz \mathbf{Y}_{21,e}, rechnerisch ermitteln. Die jeweiligen Grenzfrequenzen f_\alpha, f_\beta, f_{Y21e}, sowie die Transitfrequenz f_T stellen ein Maß für die Schaltgeschwindigkeit und Bandbreite des Transistors dar. Hierbei gilt der Zusammenhang

f_\beta < f_{Y21e} < F_T \lessapprox f_\alpha


Wird der Transistor in Emitterschaltung mit einer Stromquelle – bzw. mit einer Quelle mit einem Innenwiderstand R_i von R_i \gg r_{BE} – betrieben, spricht man von einer Stromsteuerung. Die Grenzfrequenz wird in diesem Fall durch die β-Grenzfrequenz f_\beta nach oben begrenzt.

Wird der Transistor hingegen in Emitterschaltung mit einer Spannungsquelle – bzw. mit einer Quelle mit einem Innenwiderstand R_i von R_i \ll r_{BE} – betrieben, spricht man von Spannungssteuerung. Die Grenzfrequenz wird in diesem Fall durch die Steilheitsgrenzfrequenz f_{Y21e} nach oben begrenzt.

Daraus folgt, dass man bei Spannungssteuerung eine höhere Grenzfrequenz und damit Bandbreite erreichen kann. Dies gilt auch für die Kollektorschaltung. Die größte Bandbreite erreicht jedoch die Basisschaltung bei der allgemein die Bedingung R_i > r_E gilt und damit eine Stromsteuerung vorliegt und die Bandbreite durch die α-Grenzfrequenz f_\alpha nach oben begrenzt wird.


Die Bandbreite der Schaltung ist zusätzlich vom Arbeitspunkt abhängig. In Emitterschaltung mit Stromsteuerung und bei der Basisschaltung erhält man die maximale Bandbreite, indem man den Kollektorstrom I_{C,A} so einstellt, dass die Transitfrequenz den maximalen Wert erreicht. Bei der Emitterschaltung mit Spannungssteuerung besteht ein komplizierterer Zusammenhang, da zwar die Steilheitsfrequenz f_{Y21e} mit steigendem Kollektorstrom I_C,A abnimmt, aber gleichzeitig die Schaltung der Kollektorschaltung niederohmiger wird und dadurch die ausgangsseitige Bandbreite der Schaltung erhöht wird.

Betragsfrequenzgänge für \left| \underline{\alpha}\left( j \, \omega \right) \right| und \left| \underline{\beta}\left( j \, \omega \right) \right|
Abhängigkeit der Transitfrequenz eines Transistors vom Kollektorstrom

Die Transitfrequenz f_T und die Ausgangskapazität in Basisschaltung C_{obo} (output, grounded base, open emitter) wird im Datenblatt des Transistors angegeben. Hierbei entspricht C_{obo} der Kollektor-Basis-Kapazität C_{CB}. Hieraus ergibt sich:

C_C \approx C_{obo}
C_E \approx \frac{S}{\omega_T} - C_{obo}



Literatur[Bearbeiten]

  • Ulrich Tietze, Christoph Schenk, Eberhard Gamm: Halbleiter-Schaltungstechnik. 12. Auflage, Springer 2002, ISBN 3-540-42849-6
  • Paul R. Gray, Paul J. Hurst, Stephen H. Lewis, Robert G. Meyer: Analysis and Design of Analog Integrated Circuits. Wiley 2001, ISBN 0-471-32168-0
  • Simon M. Sze: Physics of Semiconductor Devices. Wiley 1981, ISBN 0-471-05661-8
  • Hans-Martin Rein, Roland Ranfft: Integrierte Bipolarschaltungen. Springer 1980, ISBN 3-540-09607-8
  • Giuseppe Massobrio, Paolo Antognetti: Semiconductor Device Modelling with SPICE. McGraw-Hill Professional 1998, ISBN 0-07-134955-3

Fußnoten und Einzelnachweise[Bearbeiten]

  1. Datenblatt des Transistors BC547B
  2. Datenblatt des Transistors BC557B
  3. Datenblatt des Transistors BUV47
  4. Datenblatt des Transistors BFR92P
  5. MicroSim: PSpice A/D. Reference Manual. MicroSim Corporation, 1996.