Uran(V,VI)-oxid

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von Triuranoctoxid)
Wechseln zu: Navigation, Suche
Kristallstruktur
Kristallstruktur von Triuranoctoxid
__ U5+/6+      __ O2−
Allgemeines
Name Uran(V,VI)-oxid
Andere Namen

Triuranoctoxid

Verhältnisformel U3O8
CAS-Nummer 1344-59-8
PubChem 11968241
Kurzbeschreibung

grünschwarze orthorhombische Kristalle[1]

Eigenschaften
Molare Masse 842,08 g·mol−1
Aggregatzustand

fest

Dichte

8,38 g·cm−3[1]

Schmelzpunkt

1300 °C (Zers.)[1]

Löslichkeit

unlöslich in Wasser[2]

Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung aus EU-Verordnung (EG) 1272/2008 (CLP) [3]
06 – Giftig oder sehr giftig 08 – Gesundheitsgefährdend 09 – Umweltgefährlich

Gefahr

H- und P-Sätze H: 330​‐​300​‐​373​‐​411
P: ?
EU-Gefahrstoffkennzeichnung [4] aus EU-Verordnung (EG) 1272/2008 (CLP) [3]
Sehr giftig Umweltgefährlich
Sehr giftig Umwelt-
gefährlich
(T+) (N)
R- und S-Sätze R: 26/28​‐​33​‐​51/53
S: (1/2)​‐​20/21​‐​45​‐​61
Radioaktivität
Radioaktiv
 
Radioaktiv
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.
Vorlage:Infobox Chemikalie/Summenformelsuche vorhanden

Uran(V,VI)-oxid (auch Triuranoctoxid, U3O8) ist eine chemische Verbindung des Urans und zählt zu den Oxiden. Es kommt in mehreren Modifikationen vor. Pechblende enthält kein Uran(V,VI)-oxid, sondern Uran(IV)-oxid und zusätzlichen Sauerstoff.[5]

Darstellung[Bearbeiten]

Uran(V,VI)-oxid entsteht beim Erhitzen von Uran(VI)-oxid auf 700–900 °C durch Sauerstoffabgabe bzw. aus Uran(IV)-oxid durch Sauerstoffaufnahme.[6] Genauso bildet es sich beim Erhitzen von anderen Uranoxiden auf ähnliche Temperaturen an der Luft.[7]

\mathrm{3 \ UO_2 + O_2 \longrightarrow U_3O_8}

Eigenschaften[Bearbeiten]

Physikalische Eigenschaften[Bearbeiten]

Uran(V,VI)-oxid bildet mehrere Modifikationen. In reinem Uran(V,VI)-oxid ist bei Zimmertemperatur die orthorhombische α-Struktur mit der Raumgruppe C2mm und den Gitterparametern a = 671 pm, b = 1196 pm und c = 414 pm thermodynamisch stabil. Sie geht oberhalb von 210 °C reversibel in eine hexagonale Form (a = 681 pm, c = 414 pm, Raumgruppe P62m) über.[8] Bei Zimmertemperatur metastabil ist die orthorhombische β-Struktur mit der Raumgruppe Cmcm und den Gitterparametern a = 707 pm, b = 1145 pm und c = 830 pm, die durch Erhitzen von α-U3O8 auf 1350 °C an der Luft und langsames Abkühlen gebildet werden kann.[9] Daneben ist auch eine kubische, nur bei hohem Druck stabile, unterstöchiometrische Modifikation bekannt.[2]

Uran(V,VI)-oxid ist abhängig vom Sauerstoffgehalt leitfähig, bei Raumtemperatur beträgt die Elektrische Leitfähigkeit bei genau stöchiometrischem Uran(V,VI)-oxid etwa 100 Ω−1·m−1. Die Verbindung ist ein Halbleiter vom n-Typ.[2]

Frisch erzeugtes Uran(V,VI)-oxid aus irdischem Natururan hat eine spezifische Aktivität von 21450 Bq/g.

Chemische Eigenschaften[Bearbeiten]

Triuranoctoxid löst sich leicht in oxidierenden Säuren unter Bildung von Uranylionen. Bei der Reaktion mit Chlorwasserstoff bei 700 °C entsteht Uranylchlorid.[2]

Durch Reaktion mit Wasserstoff bei 700 °C oder Kohlenstoffmonoxid bei 350 °C wird es über mehrere unstöchiometrische Zwischenprodukte zu Uran(IV)-oxid reduziert.[7]

Verwendung[Bearbeiten]

Da Uran(V,VI)-oxid bei gleichen Temperaturen aus allen Uranoxiden entsteht, wird es zur gravimetrischen Bestimmung des Urangehaltes, etwa von Erzen, genutzt.[7]

Einzelnachweise[Bearbeiten]

  1. a b c David R. Lide (Hrsg.): CRC Handbook of Chemistry and Physics. 90. Auflage. (Internet Version: 2010), CRC Press/Taylor and Francis, Boca Raton, FL, Properties of the Elements and Inorganic Compounds, S. 4-97.
  2. a b c d Martin Peehs, Thomas Walter, Sabine Walter, Martin Zemek: Uranium, Uranium Alloys, and Uranium Compounds. In: Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH, 2007 (doi:10.1002/14356007.a27_281.pub2).
  3. a b Nicht explizit in EU-Verordnung (EG) 1272/2008 (CLP) gelistet, fällt aber dort mit der angegebenen Kennzeichnung unter den Sammelbegriff „Uranverbindungen“; Eintrag aus der CLP-Verordnung zu Uranverbindungen in der GESTIS-Stoffdatenbank des IFA, abgerufen am 25. April 2011 (JavaScript erforderlich).
  4. Seit dem 1. Dezember 2012 ist für Stoffe ausschließlich die GHS-Gefahrstoffkennzeichnung zulässig. Bis zum 1. Juni 2015 dürfen noch die R-Sätze dieses Stoffes für die Einstufung von Gemischen herangezogen werden, anschließend ist die EU-Gefahrstoffkennzeichnung von rein historischem Interesse.
  5. Uranpecherz. In: Römpp Online. Georg Thieme Verlag, abgerufen am 27. August 2012.
  6.  Georg Brauer (Hrsg.): Handbuch der Präparativen Anorganischen Chemie. 3., umgearb. Auflage. Band II, Enke, Stuttgart 1978, ISBN 3-432-87813-3, S. 1227.
  7. a b c Arnold F. Holleman, Nils Wiberg: Lehrbuch der Anorganischen Chemie. 102. Auflage. de Gruyter, Berlin 2007, ISBN 978-3-11-017770-1, S. 1971.
  8. B. O. Loopstra: The Phase Transition in α-U3O8 at 210ºC, in: Journal of Applied Crystallography, 1970, 3, S. 94–96 (doi:10.1107/S002188987000571X).
  9. B. O. Loopstra: The structure of β-U3O8, in: Acta Crystallographica B, 1970, 26, S. 656–657 (doi:10.1107/S0567740870002935).

Literatur[Bearbeiten]

  • Ingmar Grenthe, Janusz Drożdżynński, Takeo Fujino, Edgar C. Buck, Thomas E. Albrecht-Schmitt, Stephen F. Wolf: Uranium, in: Lester R. Morss, Norman M. Edelstein, Jean Fuger (Hrsg.): The Chemistry of the Actinide and Transactinide Elements. Springer, Dordrecht 2006, ISBN 1-4020-3555-1, S. 253–698 (doi:10.1007/1-4020-3598-5_5).