Unmöglichkeitssatz von Balinski und Young

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen

Nach dem Unmöglichkeitssatz von Balinski und Young kann kein (ganzzahliges) Sitzzuteilungsverfahren bei fester Gesamtsitzzahl gleichzeitig die Quotenbedingung erfüllen und frei vom Wählerzuwachsparadoxon sein. Er wurde 1982 von Peyton Young und Michel Balinski bewiesen.

Interpretation[Bearbeiten | Quelltext bearbeiten]

Der Satz ist interessant, weil beide damit unvereinbaren Forderungen als Mindestanforderungen an ein gerechtes Sitzzuteilungsverfahren gesehen werden können. Der Satz besagt also unmathematisch gesprochen, dass ein perfektes Sitzzuteilungsverfahren unmöglich ist. Er ermöglicht außerdem eine Einteilung der üblichen Sitzzuteilungsverfahren in die der Quotenbedingung genügenden Quotenverfahren und die vom Wählerzuwachsparadoxon freien Divisorenverfahren.

Der Satz gilt allerdings nur unter bestimmten Voraussetzungen. Über Sitzzuteilungsverfahren mit zum Beispiel variabler Anzahl der Sitze oder variierbarem Stimmgewicht der einzelnen Sitze macht der Satz keine Aussagen. Weitere Ausnahmen sind in der detaillierten Beschreibung genannt.

Mathematische Formulierung[Bearbeiten | Quelltext bearbeiten]

Die Anzahl der Parteien sei , die Anzahl der zu vergebenden Sitze . Wir benennen die Zahlen der abgegebenen Stimmen mit , dabei ist die Stimmenzahl von Partei 1 usw.

Ist die Gesamtzahl der abgegebenen Stimmen, so stünden der Partei rechnerisch Sitze zu, was natürlich in aller Regel zunächst keine ganze Zahl ergibt. Die nennt man auch Quoten.

Ein Sitzzuteilungsverfahren ordnet jeder Stimmenverteilung eine Sitzverteilung zu, wobei die natürliche Zahlen sind, die in der Summe ergeben. Das Ergebnis soll nicht von der Reihenfolge der abhängen, d. h. wenn mit vertauscht wird, dann sollen sich auch die zugeteilten Sitze mit vertauschen und sich sonst am Ergebnis nichts ändern.

Damit ein Sitzzuteilungsverfahren ganz gerecht wäre, müsste es mindestens die beiden folgenden Bedingungen erfüllen:

(Quot) Die Quotenbedingung
, d. h. die tatsächlich zugesprochene Sitzanzahl darf von der Quote nur um weniger als 1 abweichen.
(Mon) Populations-Monotonie
Wenn bei einer anderen Stimmenverteilung das Verhältnis der neuen Quoten und sich gegenüber dem Verhältnis der alten Quoten und zugunsten von Partei verändert hat oder zumindest gleich geblieben ist, d. h. wenn
bzw. ,
dann soll Partei mindestens so viele Sitze wie zuvor bekommen oder Partei höchstens so viele wie vorher, insgesamt also:
.

Anmerkung: Nicht berücksichtigt ist der Fall, dass zwei Parteien genau gleiche Quoten haben, so dass zwischen ihnen gelost werden müsste. Dieser Fall spielt aber für den folgenden Beweis keine Rolle.

Der Satz lautet nun:
Für und existiert kein populationsmonotones Zuteilungsverfahren, das der Quotenbedingung genügt.

Beweis[Bearbeiten | Quelltext bearbeiten]

Unterstellt, es gebe ein solches Verfahren.

Wir gehen zuerst von der Situation aus, dass sich folgende Quoten ergeben haben: , wobei bis natürliche Zahlen seien und eine kleine positive reelle Zahl (in der Tat notwendigerweise rational). Welche konkrete Stimmenverteilung zu diesen Quoten geführt hat, ist hier nicht wichtig. Man muss sich nur klarmachen, dass es eine solche Stimmenverteilung zu diesen Quoten gibt. Für später anzumerken ist: Da bis sich auf 7 addieren, ist .

Da unser Verfahren die Quotenbedingung erfüllt, gilt und und für .

Dann ist , also muss mindestens eine der Parteien 2 bis 4 leer ausgehen. Aufgrund der Populationsmonotonie kommt nur Partei 4 in Frage (Begründung hierzu: Man vertausche die Quoten von Partei 3 und Partei 4 – wodurch sich auch die zugeordneten Sitze vertauschen müssen, da das Ergebnis nicht von der Reihenfolge abhängen darf und alle Parteien gleich behandelt werden müssen – und wende das Populationsmonotonie-Kriterium an). D.h. .

Nun betrachten wir einen anderen Wahlausgang; als Quoten haben sich ergeben: , wobei wieder bis natürliche Zahlen seien; das sei das gleiche wie oben.

Nach der Quotenbedingung gilt und und , sowie für .

Dann ist , also können nicht und beide 0 sein, d. h. mindestens eine der beiden Zahlen ist 1. Wieder wegen der Populationsmonotonie muss auf jeden Fall sein.

Es hat sich also gegenüber der ersten Wahl Partei 1 verschlechtert und Partei 4 verbessert. Wegen der Populationsmonotonie darf es nicht möglich sein, dass sich zugleich die Quote von Partei 1 im Verhältnis zur Quote von Partei 4 verbessert hat oder gleich geblieben ist (denn daraus würde lt. Populationsmonotonie folgen, dass sich Partei 1 verbessern oder Partei 4 verschlechtern muss). Es muss also gelten: .

Da jedoch (bei hinreichend großer Gesamtstimmenzahl ) durchaus möglich ist, führt die Annahme, es gebe ein Verfahren, das Quotenbedingung und Populationsmonotonie zugleich erfüllt, zu einem Widerspruch. Somit ist die Unmöglichkeit eines solchen Verfahrens bewiesen.

Bemerkung: Der obige Beweis gilt in dieser Form nicht im Fall . Außerdem verlangt er implizit, dass "hinreichend groß" (damit auch für ganzzahlig ist) und durch 3 teilbar ist (sonst könnten Quoten und nicht auftreten). Diese Schwierigkeiten lassen sich durch entsprechende Feinarbeit aus dem Weg räumen.

Literatur[Bearbeiten | Quelltext bearbeiten]

  • Michel L. Balinski, H. Peyton Young: Fair Representation. Meeting the Ideal of One Man, One Vote. Yale University Press, New Haven CT u. a. 1982, ISBN 0-300-02724-9.