Variszische Orogenese

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von Varisziden)
Wechseln zu: Navigation, Suche
Ärathem System mya Orogenese
Känozoikum
Erdneuzeit
Dauer: 65,5 Mio.
Quartär 2,588 Alpidische
Orogenese
Neogen 23,03
Paläogen 66
Mesozoikum
Erdmittelalter
Dauer: 185,5 Mio.
Kreide 145
Jura 201,3
Trias 252,2 variszische
Orogenese
Paläozoikum
Erdfrühzeit
Dauer: 291 Mio.
Perm 298,9
Karbon 358,9
Devon 419,2
Silur 443,4 kaledonische
Orogenese
Ordovizium 485,4
Kambrium 541 cadomische
Orogenese
Neoproterozoikum
Neues
Proterozoikum
Dauer: 458 Mio.
Ediacarium 635
Cryogenium 850 keine
Angaben
vorhanden
Tonium 1.000
Mesoproterozoikum
Mittleres
Proterozoikum
Dauer: 600 Mio.
Stenium 1.200
Ectasium 1.400
Calymmium 1.600
Paläoproterozoikum
Frühes
Proterozoikum
Dauer: 900 Mio.
Statherium 1.800
Orosirium 2.050
Rhyacium 2.300
Siderium 2.500
Neoarchaikum
Dauer: 300 Mio.
2.800
Mesoarchaikum
Dauer: 400 Mio.
3.200
Paläoarchaikum
Dauer: 400 Mio.
3.600
Eoarchaikum
Dauer: n. def.
4.000
Hadaikum
Dauer: n. def.
4.600
Es ist zu beachten, dass aufgrund der enormen Dauer
der Orogenesen ihr Beginn und Ende oft unterschiedlich
datiert werden, je nachdem, auf welchen Ort und auf
welche ihrer Phasen man sich bezieht.

Die variszische, variscische[1] oder variskische Orogenese ist eine Phase der Gebirgsbildung (Orogenese) im mittleren Paläozoikum (Erdaltertum), die durch die Kollision von Gondwana und Laurussia sowie mehrerer von Gondwana abstammender Mikroplatten (Terranes) verursacht wurde. Damit ging vermutlich die Subduktion ganzer Ozeanbecken einher.

Begriffsgeschichte[Bearbeiten]

Der Begriff wurde von Eduard Suess 1888 erstmals in die Literatur eingeführt. Er schreibt:

„Nirgends aber treten die Umrisse einzelner alter Gebirgskerne so deutlich hervor als vor dieser Hauptlinie, in der Münchberger Gneissmasse bei Hof und in dem sächsischen Granulitgebirge. Es ist daher entsprechend, dass in dem Lande der Varisker, dem Vogtlande, der Name des die meisten deutschen Horste umfassenden Gebirges gewählt werde, und es wird dasselbe nach der Curia Variscorum (Hof in Bayern) das variscische Gebirge genannt werden.“

Eduard Suess, Das Antlitz der Erde, Band II, 1888, S. 131[2]

Der germanische Stamm der Varisker wird zwar mehrmals in römischen und spätrömischen Quellen in wechselnden Schreibweisen („Narisker“) genannt, doch sind die Wohnsitze der Varisker nicht genau lokalisierbar. Es ist nicht gesichert, dass sie tatsächlich jemals im heutigen Vogtland ansässig waren.

Curia Variscorum ist die neulateinische Bezeichnung für Hof,[3] da angenommen wurde, dass sich dort der Hauptort oder Fürstensitz der Varisker befand. Die Bezeichnung Curia Variscorum war in römischer Zeit nicht bekannt, sie wurde von keinem der klassischen Schriftsteller verwendet. Der Name der Stadt Hof ist mittelalterlichen Ursprungs, der Name der ursprüngliche Siedlung vor der Stadtgründung war Rekkenitze. Daher gibt es auch die neulateinische Bildung Curia Rekkenitze[4] für die Stadt Hof oder die in mittelalterlichen Urkunden verwendete Form Curia Regnitz.[5] Ebenso neulateinischen Ursprungs ist der Name Variscia für das Vogtland.[3]

Bereits 1889 führt Fritz Frech aus, dass die Schreibweise richtiger varistisch heißen müsste.[6] Diese Meinung und Schreibweise vertrat er auch in folgenden Arbeiten (z.B. der Lethaea Geognostica[7]).

Seit dem Jahre 1904 ist im „Handbuch der regionalen Geologie“ auch die Schreibweise variskisch belegt.[8] Ebenfalls aus dem Jahre 1904 stammt ein erster Beleg für die Schreibweise variszisch.[9] Dies veranlasste Ernst Zimmermann 1906 zu einem Artikel „Über die Schreibweise der Wörter „varistisch“ und „Rät““ in der Zeitschrift der Deutschen Geologischen Gesellschaft. Er kam zu dem Schluss, dass varistisch die „richtige“ Schreibweise sei.[10] Allerdings hat sich bis heute keine der vier Schreibweisen endgültig durchgesetzt. In deutschsprachigen Fachpublikationen (Zeitschriftenartikel und Bücher) wird derzeit die Schreibweise variszisch am meisten verwendet.[11][12]

Die heute noch fast unverändert gültige Gliederung der europäischen Varisziden wurde 1927 vom in Leipzig wirkenden Geologieprofessor Franz Kossmat erarbeitet.[13]

Begriffsabgrenzung[Bearbeiten]

Im englischsprachigen Raum wird neben variscan anstatt variszisch auch der Begriff hercynian gebraucht,[14] der in Deutschland bereits durch den von der geografischen Erstreckung des Harzes geprägten geologischen Richtungsbegriff herzynisch besetzt ist. In den USA wird der Begriff nicht für die Orogenesen in den Appalachen verwendet, hier sind die lokalen Namen der Gebirgsbildungen in den Appalachen gebräuchlich.[15],[16]

Da sich die tektonische Deformation zahlreicher Gesteinsformationen in weiten Teilen der Erde, teilweise einhergehend mit intensiver Metamorphose, auf eine gemeinsame Orogenese im mittleren Erdaltertum (Devon bis Karbon) zurückführen lässt, wird variszisch nicht nur als strukturelle, sondern, informell, auch als zeitliche Angabe verstanden. Sie steht für einen Zeitraum vor etwa 400 bis 300 Ma vor heute. In Publikationen, die sich mit der Geologie Ostasiens befassen, werden auch etwas jüngere Gebirgsbildungen – bis etwa vor 230 Ma – zur variszischen Orogenese gerechnet.[17] Die Abgrenzung eines variszischen Gebirges ist auf der Grundlage der wissenschaftlichen Literatur weder räumlich noch zeitlich eindeutig.

Der Begriff variszisch bezieht sich im weiteren Sinne auf die Gebirgsbildungsphase in der jüngeren Hälfte des Paläozoikums. Im engeren Sinne bezeichnet variszisch die gebirgsbildenden Vorgänge bei der Kollision von Gondwana und Laurussia im heutigen Mittel-, West- und Südwesteuropa, im Osten Nordamerikas und im Westen Nordafrikas.

Lage der variszischen Gebirge[Bearbeiten]

Heutige Lage (Ausbisse) mittel- und spätpaläozoischer Orogenkomplexe (schraffiert). Es ist zu beachten, dass diese teilweise in den jungmesozoisch-tertiären Gebirgsgürteln (z. B. den Pyrenäen) enthalten sind. Zudem werden der Ural sowie die ostasiatischen Komplexe eher selten unter dem Begriff „variszisch“ subsumiert.
Paläogeographische Karte Nordamerikas und Europas in „variszischer“ Zeit mit Darstellung der Erstreckung des Ouachita-Allegenisch-Mauretanidisch-Herzynischen Faltengürtels

Das Variszikum in engerem Sinne erstreckt sich über große Teile Mitteleuropas und wurde hier zuerst erforscht. Die über Tage aufgeschlossenen variszischen Gesteine treten in zwei Strängen auf. Der nördliche Strang führt von Westpolen und Böhmen bzw. dem nördlichen Österreich quer über Deutschland und das südliche Belgien über die Bretagne und Devon/Cornwall in Südengland bis nach Wales und Südirland, um sich dann über den Atlantik in den paläozoischen Gebirgen der kanadischen und amerikanischen Ostküste fortzusetzen. Von Korsika, Sardinien, dem französischen Zentralmassiv und der Montagne Noire führt der zweite Gebirgsbogen über die Pyrenäen, die kantabrisch-asturischen und zentraliberischen Ketten in Spanien sowie die Balearen über das Mittelmeer nach Marokko in die marokkanische Meseta und den Anti-Atlas.

Wegen der starken Überprägung durch die Auffaltung der Alpen ist die genaue Fortsetzung der Varisziden nach Südosten nicht im Einzelnen geklärt. Zu ihnen werden die alpinen variszischen Massive (Mercantour, Pelvoux, Belledonne, Mont Blanc, Aarmassiv, große Teile der Zentralen Ostalpen), die dinarischen und griechischen Gebirge sowie Gebirgszüge in der Türkei gezählt.[18] Nach Westen finden die mitteleuropäischen Varisziden ihre direkte Fortsetzung an der nordamerikanischen Ostküste in Neufundland, Neuschottland, Neuengland und in weiter Verbreitung in den Appalachen. In den Ouachita Mountains in Arkansas und Oklahoma sind Reste der noch erheblich weiter nach Westen reichenden Gebirgskette des Ouachita Orogens erhalten, die bei der Kollision von Süd- mit Nordamerika entstanden. Dieser Gebirgszug ist fast vollständig durch jüngere Gesteine bedeckt.

Gebirgszüge des Spätpaläozoikums (Perm), die nur in weiterem Sinne zu den Varisziden gerechnet werden, finden sich darüber hinaus im Ural, Pamir, Tianshan und anderen Gebirgen Asiens.[19][20] Zu einem unabhängigen Gebirgsbildungssystem und damit nicht zu den Varisziden gehört das ebenfalls aus dieser Zeit stammende, an der nordamerikanischen Westküste gelegene Antler-Orogen und die mit ihm ehemals zusammenhängenden Gebirgszüge an der Westseite Südamerikas, in Antarktika, an der Südspitze Afrikas und im ostaustralischen Tasman-Gebirge in Victoria und New South Wales.[21],[22]

Gliederung der Varisziden in Mitteleuropa[Bearbeiten]

Gliederung der Varisziden in Deutschland und Umgebung nach Kossmat 1927 (verändert)

Von Norden nach Süden werden eine Vorzone und drei variszische Gebirgsbögen unterschieden, welche sich in ihrem geologischen Aufbau stark unterscheiden. Heute trennen gewaltige Störungszonen diese Regionen voneinander.

Die geologische Interpretation dieser Einheiten sowie der Ihnen zugehörigen Störungszonen, als beispielsweise ehemalige Subduktionszonen und damit das vormalige vorhanden sein eines saxothuringischen oder moldanubischen Ozeans ist zum Teil noch Gegenstand aktueller Forschungdiskussionen.[23]

Gliederung der Varisziden in Nordamerika[Bearbeiten]

Die Südappalachen werden von West nach Ost in mehrere etwa von Norden nach Süden verlaufende Gürtel eingeteilt.

  • Appalachen-Plateau (Vorland)
  • Valley-And-Ridge-Provinz, Vorlandüberschiebungsgürtel, von der östlich anschließenden Blue-Ridge Provinz an flacher Überschiebungsbahn weit überschoben (Grandfather Mountain Window)
  • Blue-Ridge-Provinz, Piedmont (metamorpher Kern der Südappalachen), Inneres Piedmont (Angliederung an Amerika ca. 500-450 Ma, taconische Phase)
  • Piedmont (metamorpher Kern der Südappalachen): Charlotte-Gürtel, Carolina-Schiefergürtel (Angliederung an Amerika ca. 380 Ma, acadische Phase)
  • Coastal Plain (passiver Riftrand des Atlantik seit 200 Ma), jüngerer Gesteine über Resten des Charlotte-Gürtels und des Carolina-Schiefergürtel

Jenseits des Atlantik bilden die so genannten Mauretaniden an der afrikanischen Nordwestküste seit 200 Ma den passiven Riftrand des Atlantik. Vor der Öffnung des Atlantik gehörten sie zu den heutigen Appalachen. Hier sind nach Osten weisende Überschiebungen erhalten, an denen metamorphen Schichten, die den Gesteinen des Carolina-Schiefergürtels vergleichbar sind, über nicht metamorphes Vorland gestapelt wurden, welches zu Afrika gehört. Diese Gesteine werden als Suturzone der alleghenischen Orogenese betrachtet (Kollision Afrikas als Bestandteil von Gondwana mit Nordamerika in Laurussia vor 270 Ma).[24]

Entstehung[Bearbeiten]

Während der variszischen Orogenese kam es zur Kollision mehrerer Mikrokontinente (siehe auch: Armorica) mit dem bereits vorhandenen Nordkontinent. Dies führte in Europa nach teilweiser flacher Meeresüberflutung zur Auffaltung eines Systems von Hochgebirgen, die in mehreren Phasen vom Devon bis zum Ende des Paläozoikums dauerte. Die Reste dieser Orogene finden sich als Rumpf- und Mittelgebirge in West- und Mitteleuropa wieder.

Diesem Gebirgssystem ging die Bildung eines Nordkontinents aus den Festlandblöcken Laurentia und Fennosarmatia voran, die im Ordovizium (490-440 Ma) als Folge der kaledonischen Gebirgsbildung verschmolzen. Metamorphe Reste des älteren präkambrischen Grundgebirges sind im Untergrund Böhmens, Thüringen und bis zum Oberrhein nachgewiesen. Über deren Ausgangsmaterial ist relativ wenig bekannt, Datierungen einzelner Mineraleinschlüsse in diesen Gesteinen ergaben Alter, die wohl auf weit ältere, zum Teil sogar archaische (ca. 3,2 Mrd. Jahre) Gebirgsbildungsphasen zurückgehen.[25]

Paläogeographische Rekonstruktion der Landmassen im Pennsylvanium (früher: „Oberkarbon“), ca. 300 mya

Die bestehende alte Landmasse senkte sich zum variszischen Trog. Mächtige Sedimente wurden hier abgelagert, die zu hohem Druck und hohen Temperaturen der darunterliegenden Gesteinsschichten und in der Folge zu deren metamorpher Umwandlung führten. Durch plattentektonische Vorgänge, vor allem durch die Annäherung der Afrikanischen Platte an die eurasische Platte, wirkte währenddessen Druck aus Südosten. Dadurch entstanden Zonen mit Aufwölbungen und großräumigen Mulden. Daraus folgte die Auffaltung des variskischen Hochgebirges. Der durch die Orogenese entstandene Hochgebirgszug Mitteleuropas, der auch Karbonische Alpen genannt wird, war etwa 600 km lang und hatte eine durchschnittliche Höhe von wahrscheinlich ca. 5 km, was in etwa dem heutigen tibetischen Hochplateau entspricht.[26]

Gleichzeitig mit dieser Gebirgsbildung setzte starke Erosion ein, die mit steigendem Abstand zur Meereshöhe zunimmt (erhöhte Reliefenergie). Im warmen Klima entstanden die Steinkohlenflöze des Ruhrgebietes durch Bedeckung organischer Schichten mit den erodierten Sedimenten. An Verwerfungslinien konnte Magma aufsteigen und führte zu vulkanischer Aktivität oder zur Bildung unterirdischer Plutone.

Bereits im Perm war das variszische Hochgebirge zur sogenannten permischen Rumpffläche erodiert und war von Sedimentschichten überlagert. Diese Rumpfgebirge sind heute nach einer neuerlichen tektonischen Hebung durch die Entstehung der Alpen als variszische Inseln (Hochflächen) zwischen den jüngeren Gesteinen des Mesozoikums erhalten. Diese sind teilweise durch fluviale Erosionsprozesse zerschnitten und werden auch als Riedel bezeichnet. Im Laufe der weiteren Erdgeschichte folgte die Bruchtektonik, welche die heute noch vorhandenen Mittelgebirge prägte.

Knapp vor dem Beginn der variszischen Gebirgsbildung entstanden im Devon durch die untermeerische Verwitterung vulkanischer Gesteine zahlreiche Lagerstätten mit Roteisenerzen, die in Eisenerzgruben abgebaut wurden. Im Unterkarbon wurden vielerorts Grauwacken abgelagert, welche eine Hauptphase der Gebirgsbildung in der Zeit des Oberkarbons (vor 322 bis 290 Mio. Jahren) anzeigen. Dabei wurden die ursprünglich flach abgelagerten Gesteinseinheiten gefaltet, zerbrochen und geschiefert. Aus tonigen Gesteinen entstanden die heutigen Tonschiefer, die lange als Dachschiefer gewonnen wurden.

Siehe auch[Bearbeiten]

Weblinks[Bearbeiten]

 Commons: Variszische Orogenese – Sammlung von Bildern, Videos und Audiodateien

Einzelnachweise[Bearbeiten]

  1. DSK (2013): Deutsche Stratigraphische Kommission (Hrsg.): Stratigraphie von Deutschland X, Rotliegend, Teil I: Innervariscische Becken. – Schriftenr. Dt. Ges. Geowiss., 61: 882 S., 1 Kt.; Hannover. – [Koordination und Redaktion: H. Lützner & G. Kowalczyk] – ISBN 978-3-510-49225-1
  2. Suess, Eduard (1888): Das Antlitz der Erde. Zweiter Band. 703 S., Temsky, Prag & Wien, Freytag, Leipzig Online bei archive.org (S.131)
  3. a b Köster Rudolf (2003): Eigennamen im deutschen Wortschatz: ein Lexikon. 196 S., Online bei Google Books (S.183)
  4. Obermüller, Wilhelm (1872): Deutsch-keltisches, geschichtlich-geographisches Wörterbuch: zur Erklärung der Fluss- Berg- Orts- Gau- Völker- und Personen-Namen Europas, West-Asiens und Nord-Afrikas im allgemeinen wie insbesondere Deutschlands nebst den daraus sich ergebenden Folgerungen für die Urgeschichte der Menschheit, Band 2. 1049 S., Denicke, Berlin.
  5. Johann Adolph Schultes: Diplomatische Beyträge zur Geschichte der Grafen von Andechs und nachherigen Herzoge von Meran etc. Historische Abhandlungen der Königlich-baierischen Akademie der Wissenschaften, 4: 157-München Online bei Google Books.
  6. Frech, Fritz (1889): Das Französische Zentralplateau. Eine Skizze seiner Entwickelung. Zeitschrift der Gesellschaft für Erdkunde zu Berlin, 24: 132-165, Berlin. [1]
  7. Roemer, Ferdinand& Fritz Frech (1902): Lethaea geognostica: Handbuch der Erdgeschichte mit Abbildungen der für die Formationen bezeichnendsten Versteinerungen, Teil 1,Band 2. E. Schweizerbart'schen Verlagsbuchhandlung (E. Nägele),
  8. Hettner, Alfred (1904): Die deutschen Mittelgebirge. Versuch einer vergleichenden Charakteristik. Geographische Zeitschrift, 10(1): 13-25, Stuttgart Online bei JSTOR.
  9. Gustav Steinmann & Otto Wilckens (1904): Handbuch der regionalen Geologie. Band 1,Teil 5. C. Winter's Universitätsbuchhandlung, Heidelberg [2]
  10. Zimmermann, Ernst (1906): Über die Schreibweise der Wörter „varistisch“ und „Rät“. Zeitschrift der Deutschen Geologischen Gesellschaft, 58: 50-51, Berlin.
  11. Suche variszisch*
  12. Suche variszisch* bei Google Books
  13. Kossmat, F.: Gliederung des varistischen Gebirgsbaus. Abh. Sächs. Geol. L.-A. 1, 1-39, Leipzig 1927
  14. Internetsuche am 29. Dezember 2007 bei Google: ca. 44.500 für „variscan orogeny“, ca. 15.000 „hercynian orogeny“. Im deutschsprachigen Raum: 1.170 für „variszische Orogenese“, 154 für „herzynische Orogenese“
  15. Tectonics of the Devonian. University of California Museum of Paleontology, abgerufen am 1. August 2013 (englisch).
  16. H. Williams: Historical Geology. The Hercynian Orogeny. In: Historical Geology. University of North Texas, archiviert vom Original am 21. April 2008, abgerufen am 1. August 2013.
  17. K. Y. Lee: Geology of petroleum and coal deposits in the North China Basin, Eastern China. In: USGS Bulletin 1871. 1989, S. 3, abgerufen am 1. August 2013 (Tabelle 1).
  18. Tectonic Map of the western Tethysides. Institut für Geologie und Paläontologie der Universität von Lausanne, abgerufen am 1. August 2013 (englisch).
  19.  R. Hohl (Hrsg.): Die Entwicklungsgeschichte der Erde. 6. Auflage. Werner Dausien, Hanau 1985, ISBN 3-7684-6526-8, S. 230.
  20. Paleotethys. Die variszische Entwicklung anhand von paläogeographischen Rekonstruktionen. Arbeitsgruppe Tethyan Plate Tectonic der Universität von Lausanne, abgerufen am 1. August 2013 (englisch).
  21. Paläogeographische Konfiguration Unterkarbon (en.). Paleomap Project von C.Scotese. Abgerufen am 29. Dezember 2007
  22. Victoria's geology until Carboniferous (en.). Geologie des Bundesstaates Victoria bis zum Karbon. Abgerufen am 28. Dezember 2007
  23. http://www.db-thueringen.de/servlets/DerivateServlet/Derivate-2234/Hofm.pdf
  24. Das Wachstum der Kontinente, von Cook, F.A. et al., in: Ozeane und Kontinente, S.158 - 171 Spektrum der Wissenschaft Verlag, Heidelberg 1987. ISBN 3-922508-24-3.
  25.  U. Linnemann, R. L. Romer (Hrsg.): Pre-Mesozoic Geology of Saxo-Thuringia. From the Cadomian Active Margin to the Variscan Orogen. Schweizerbart, 2010, S. 485.
  26. W. Dörr, G. Zulauf: Elevator tectonics and orogenic collapse of a Tibetan-style plateau in the European Variscides: the role of the Bohemian shear zone. International Journal of Earth Sciences March 2010, Volume 99, Issue 2, pp 299-325